Educational level: this is a tertiary (university) resource.
Subject classification: this is a physics resource.
Subject classification: this is a chemistry resource.
Subject classification: this is a mathematics resource.



Welcome to the Department of Quantum Physics!
Feynman Diagram for Gluon Radiation


Welcome also to the School of Physical Sciences!
·

Welcome

Welcome to Wikiversity, Quantum physics!

You can contact us with questions at the colloquium or get in touch with me personally if you would like some help.

Remember to sign your comments when participating in discussions. Using the signature icon   makes it simple.

We invite you to be bold and assume good faith. Please abide by our civility, privacy, and terms of use policies.

To find your way around, check out:


To get started, experiment in the sandbox or on your userpage.

See you around Wikiversity! --~~~~


edit

Bibliography

edit
  • [1]Chester, Marvin (1987) Primer of Quantum Mechanics. John Wiley. ISBN 0-486-42878-8
  • [2] Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 0-13-111892-7. OCLC 40251748.  A standard undergraduate text.
  • [3] Richard Feynman, 1985. QED: The Strange Theory of Light and Matter, w:Princeton University Press. ISBN 0-691-08388-6. Four elementary lectures on w:quantum electrodynamics and w:quantum field theory, yet containing many insights for the expert.
  • [4] Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. ISBN 0-19-852011-5.  The beginning chapters make up a very clear and comprehensible introduction.
  • [5] Albert Messiah, 1966. Quantum Mechanics (Vol. I), English translation from French by G. M. Temmer. North Holland, John Wiley & Sons. Cf. chpt. IV, section III.
  • [6] Omnès, Roland (1999). Understanding Quantum Mechanics. Princeton University Press. ISBN 0-691-00435-8. OCLC 39849482. 
  • [7] von Neumann, John (1955). Mathematical Foundations of Quantum Mechanics. Princeton University Press. ISBN 0-691-02893-1. 
  • [8] Hermann Klaus Hugo Weyl, FRS, 1950. The Theory of Groups and Quantum Mechanics, Dover Publications.
  • [9] D. Greenberger, K. Hentschel, F. Weinert, eds., 2009. Compendium of quantum physics, Concepts, experiments, history and philosophy, Springer-Verlag, Berlin, Heidelberg.


  • ... more to come
  • [12] Brown R (2004) Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems. In: Proceedings of the Fields Institute Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras and Semiabelian Categories, September 23-28, 2004, Fields Institute Communications 43:101-130.
  • [13] Brown R, Hardie K A, Kamps K H, and Porter T (2002) A homotopy double groupoid of a Hausdorff space. Theory and Applications of Categories 10:71-93.
  • [14] Georgescu G, and Popescu D (1968) On Algebraic Categories. Revue Roumaine de Mathematiques Pures et Appliquées 13:337-342.
  • [15] Georgescu G, and Vraciu C (1970) On the Characterization of Łukasiewicz Algebras. J. Algebra, 16 (4):486-495.
  • [16] Georgescu G (2006) N-valued Logics and Łukasiewicz-Moisil Algebras. Axiomathes 16 (1-2): 123-136.
  • [17] Landsman N P (1998) Mathematical topics between classical and quantum mechanics. Springer Verlag, New York.

Quantum Logics

edit

Notation Table

edit

Polish- or Łukasiewicz's notation for logic

Concept Conventional
notation
Polish
notation
Polish / English
word
w:Negation   negation (No)}
Conjunction   Kφψ conjunction
w:Disjunction   Aφψ alternate OR=disjunction
w:Material conditional   Cφψ implication
w:Biconditional   Eφψ equivalence'
w:Falsum   O False value
w:Sheffer stroke   Dφψ Sheffer stroke
Possibility   contingent
Necessity   Necessary condition
w:Universal quantifier Πpφ kwantyfikator ogólny ANY:

For all p, \phi|Universal quantifier

Existential quantifier   Σpφ Exists
  • Note that the quantifiers ranged over propositional values in Łukasiewicz's work on many-valued logics.

See also

edit