Vectors and coordinates
This problem set is devoted to a variety of vector situations and coordinates for evaluation.
ContentsEvaluation

Problem 1Edit
For standard basis, or unit, vectors (i, j, k) and vector components of a (a_{x}, a_{y}, a_{z}), what are the right ascension, declination, and value of a:
If the xaxis is the longitude of the Greenwich meridian, and a_{x} equals a_{y}, then RA equals?
If a_{x} equals a_{y} equals a_{z}, then the declination is?
The value of a is given by?
Problem 2Edit
For standard basis, or unit, vectors (i, j, k) and vector components of a (a_{x}, a_{y}, a_{z}), what are the right ascension, declination, and value of a:
for a_{x} equals a_{y} equals a_{z}
If the xaxis is the longitude of the Greenwich meridian, and the object is at a_{x} and 2a_{y}, then RA equals?
a_{x} and 2a_{y} and 3a_{z}, then the declination is?
The value of a is given by?
Problem 3Edit
For standard basis, or unit, vectors (i, j, k) and vector components of a (a_{x}, a_{y}, a_{z}), what are the right ascension, declination, and value of a:
for a_{x} equals a_{y} equals a_{z}
If the xaxis is the longitude of the Greenwich meridian, and the object is at 3a_{x} and 4a_{y}, then RA equals?
3a_{x} and 4a_{y} and 5a_{z}, then the declination is?
The value of a is given by?
Problem 4Edit
For standard basis, or unit, vectors (i, j, k) and vector components of a (a_{x}, a_{y}, a_{z}), what are the right ascension, declination, and value of a:
for a_{x} equals 2a_{y} equals 3a_{z}
If the xaxis is the longitude of the Greenwich meridian, and the object is at 3a_{x} and 4a_{y}, then RA equals?
3a_{x} and 4a_{y} and 5a_{z}, then the declination is?
The value of a is given by?
Problem 5Edit
An object has RA 10^{h} 10^{m} 10^{s} Dec 20° 20' 20" and r = 23 lyrs.
What are a_{x}, a_{y}, and a_{z}?
What are ℓ and b?
What are the ecliptic longitude and latitude?
What are J1855 and B1855?
What are J2100 and B2100?
Problem 6Edit
An object has coordinates: 125.678 85.678 and r = 110 pc.
What are RA and Dec?
What are a_{x}, a_{y}, and a_{z}?
What are ℓ and b?
What are the ecliptic longitude and latitude?
What are J1800 and B1800?
What are J2075 and B2075?
Problem 7Edit
For standard basis, or unit, vectors (i, j, k) and vector components of a (a_{x}, a_{y}, a_{z}), for a_{x} equals 2a_{y} equals 3a_{z}:
If the xaxis is the longitude of the Greenwich meridian, and the object is at a = 3a_{x} and b = 4a_{y}, then what is
Problem 8Edit
Standard basis, or unit, vectors are (i, j, k) for vector components of a (a_{x}, a_{y}, a_{z}).
Let a_{x} equal 3a_{y} equal 4a_{z}.
What are
If a = [5a_x, 6a_y, 7a_z] and b = [8a_x, 9a_y, 10a_z], then
HypothesesEdit
 The square root of negative one is not needed in vector space.
See alsoEdit
External linksEdit
 Bing Advanced search
 Google Books
 Google scholar Advanced Scholar Search
 International Astronomical Union
 JSTOR
 Lycos search
 NASA/IPAC Extragalactic Database  NED
 NASA's National Space Science Data Center
 Office of Scientific & Technical Information
 Questia  The Online Library of Books and Journals
 SAGE journals online
 The SAO/NASA Astrophysics Data System
 Scirus for scientific information only advanced search
 SDSS Quick Look tool: SkyServer
 SIMBAD Astronomical Database
 SIMBAD Web interface, Harvard alternate
 Spacecraft Query at NASA.
 SpringerLink
 Taylor & Francis Online
 Universal coordinate converter
 Wiley Online Library Advanced Search
 Yahoo Advanced Web Search
{{Charge ontology}}
{{Flight resouces}}
{{Principles of radiation astronomy}}
{{Repellor vehicle}}
{{Technology resources}}