Exercise for the break
Determine the
greatest common divisor
of
X
2
−
1
{\displaystyle {}X^{2}-1}
and
X
3
−
1
{\displaystyle {}X^{3}-1}
,
and a representation of it.
Exercises
Determine the
greatest common divisor
of
X
−
1
{\displaystyle {}X-1}
and
X
−
2
{\displaystyle {}X-2}
,
and a representation of it.
Determine the
greatest common divisor
of
X
4
−
X
3
+
7
X
2
−
5
X
+
11
{\displaystyle {}X^{4}-X^{3}+7X^{2}-5X+11}
and
X
3
−
6
X
2
+
4
X
+
6
{\displaystyle {}X^{3}-6X^{2}+4X+6}
,
and a representation of it.
Determine in
Q
[
X
]
{\displaystyle {}\mathbb {Q} [X]}
, using the Euclidean algorithm, the
greatest common divisor
of the polynomials
P
=
X
3
+
2
X
2
+
5
X
+
2
{\displaystyle {}P=X^{3}+2X^{2}+5X+2}
and
Q
=
X
2
+
4
X
−
3
{\displaystyle {}Q=X^{2}+4X-3}
.
Determine in
Q
[
X
]
{\displaystyle {}\mathbb {Q} [X]}
, using the Euclidean algorithm, the
greatest common divisor
of the polynomials
P
=
X
9
−
1
{\displaystyle {}P=X^{9}-1}
and
Q
=
X
3
−
1
{\displaystyle {}Q=X^{3}-1}
.
Determine in
R
[
X
]
{\displaystyle {}\mathbb {R} [X]}
, using the Euclidean algorithm, the
greatest common divisor
of the polynomials
P
=
X
3
+
π
X
2
+
7
{\displaystyle {}P=X^{3}+\pi X^{2}+7}
and
Q
=
X
2
+
7
X
−
2
{\displaystyle {}Q=X^{2}+{\sqrt {7}}X-{\sqrt {2}}}
.
Determine in
F
5
[
X
]
{\displaystyle {}{\mathbb {F} }_{5}[X]}
, using the Euclidean algorithm, the
greatest common divisor
of the polynomials
P
=
X
4
+
3
X
3
+
X
2
+
4
X
+
2
{\displaystyle {}P=X^{4}+3X^{3}+X^{2}+4X+2}
and
Q
=
2
X
3
+
4
X
2
+
X
+
3
{\displaystyle {}Q=2X^{3}+4X^{2}+X+3}
.
Let
n
≥
2
{\displaystyle {}n\geq 2}
.
Perform in
Q
[
X
]
{\displaystyle {}\mathbb {Q} [X]}
the
division with remainder
P
{\displaystyle {}P}
divided by
Q
{\displaystyle {}Q}
for the polynomials
P
=
X
n
−
1
+
X
n
−
2
+
⋯
+
X
2
+
X
+
1
{\displaystyle {}P=X^{n-1}+X^{n-2}+\cdots +X^{2}+X+1}
and
T
=
X
−
1
{\displaystyle {}T=X-1}
.
Find a representation of
1
{\displaystyle {}1}
as a linear combination of these polynomials.
Let
K
{\displaystyle {}K}
be a
field , and let
K
[
X
]
{\displaystyle {}K[X]}
be the
polynomial ring
over
K
{\displaystyle {}K}
. Let
F
,
G
∈
K
[
X
]
{\displaystyle {}F,G\in K[X]}
be polynomials. Let
K
⊆
L
{\displaystyle {}K\subseteq L}
be a
field extension.
Show that
F
{\displaystyle {}F}
is a divisor of
G
{\displaystyle {}G}
in
K
[
X
]
{\displaystyle {}K[X]}
if and only if
F
{\displaystyle {}F}
is a divisor of
G
{\displaystyle {}G}
in
L
[
X
]
{\displaystyle {}L[X]}
.
The following exercises refer to the Euclidean algorithm for the integers, which works completely analogous to the Euclidean algorithm for polynomials. We first show why the Lemma of Bezout also holds for integers.
Prove the Lemma of Bezout for integers
a
1
,
…
,
a
n
{\displaystyle {}a_{1},\ldots ,a_{n}}
.
The delivery company "bucket without bugs“ is specialized in the transport of water. It has three buckets, one with
77
{\displaystyle {}77}
liter, one with
91
{\displaystyle {}91}
liter, and one with
143
{\displaystyle {}143}
liter. The buckets do not have any marking. The company gets the request to transport, altogether, exactly one liter of water from the North Sea to the Baltic Sea. How can the company achieve this request?
Determine in
Z
{\displaystyle {}\mathbb {Z} }
, using the Euclidean algorithm, the
greatest common divisor
of
1071
{\displaystyle {}1071}
and
1029
{\displaystyle {}1029}
.
Determine in
Z
{\displaystyle {}\mathbb {Z} }
, using the Euclidean algorithm, the
greatest common divisor
of
2956
{\displaystyle {}2956}
and
2444
{\displaystyle {}2444}
.
Determine in
Z
{\displaystyle {}\mathbb {Z} }
, using the Euclidean algorithm, the
greatest common divisor
of
3146
{\displaystyle {}3146}
and
1515
{\displaystyle {}1515}
. Find also a representation of the greatest common divisor as a linear combination with these numbers.
Rabbits are born in the middle of the month, the times of gestation is one month, and they reach sexual maturity at the age of two months. Every litter consists of two rabbits, and they live forever.
We start in month
1
{\displaystyle {}1}
with just one couple, whose age is one month. Let
f
n
{\displaystyle {}f_{n}}
denote the number of couples of rabbits in the
n
{\displaystyle {}n}
-th month, hence
f
1
=
1
{\displaystyle {}f_{1}=1}
,
f
2
=
1
{\displaystyle {}f_{2}=1}
.
Prove, by induction, the recursive formula
f
n
+
2
=
f
n
+
1
+
f
n
.
{\displaystyle {}f_{n+2}=f_{n+1}+f_{n}\,.}
This sequence is called the sequence of the Fibonacci numbers . How many of the
f
n
{\displaystyle {}f_{n}}
couples are in the
n
{\displaystyle {}n}
-th month able to reproduce?
The Fibonacci-numbers start with
1
,
1
,
2
,
3
,
5
,
8
,
13
,
21
,
34
,
…
{\displaystyle {}1,1,2,3,5,8,13,21,34,\ldots }
.
Apply to two consecutive
Fibonacci numbers
the
Euclidean algorithm.
What can you observe?
Determine the
kernels
of the powers
M
i
{\displaystyle {}M^{i}}
of the matrix
M
=
(
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
)
.
{\displaystyle {}M={\begin{pmatrix}0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\\0&0&0&0&0\end{pmatrix}}\,.}
Determine the kernels of the powers
M
i
{\displaystyle {}M^{i}}
of the matrix
M
=
(
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
)
.
{\displaystyle {}M={\begin{pmatrix}0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&0\\0&0&0&0&1\\0&0&0&0&0\end{pmatrix}}\,.}
Let
M
=
(
3
1
7
0
3
5
0
0
3
)
.
{\displaystyle {}M={\begin{pmatrix}3&1&7\\0&3&5\\0&0&3\end{pmatrix}}\,.}
Determine the
kernels
of the powers
(
3
E
3
−
M
)
i
.
{\displaystyle {\left(3E_{3}-M\right)}^{i}.}
Determine the
generalized eigenspaces
of the matrix
(
1
1
0
0
0
1
0
0
0
0
2
3
0
0
0
2
)
.
{\displaystyle {\begin{pmatrix}1&1&0&0\\0&1&0&0\\0&0&2&3\\0&0&0&2\end{pmatrix}}.}
Let
π
{\displaystyle {}\pi }
be a
cycle
of length
n
{\displaystyle {}n}
, and let
M
{\displaystyle {}M}
denote the corresponding
permutation matrix ,
that is,
M
=
(
0
0
0
…
1
1
0
0
…
0
0
1
0
…
0
⋮
⋱
⋱
⋱
⋮
0
0
…
1
0
)
.
{\displaystyle {}M={\begin{pmatrix}0&0&0&\ldots &1\\1&0&0&\ldots &0\\0&1&0&\ldots &0\\\vdots &\ddots &\ddots &\ddots &\vdots \\0&0&\ldots &1&0\end{pmatrix}}\,.}
Determine the
characteristic polynomial
χ
M
{\displaystyle {}\chi _{M}}
of
M
{\displaystyle {}M}
.
Show that
P
=
X
−
1
{\displaystyle {}P=X-1}
divides
χ
M
{\displaystyle {}\chi _{M}}
, and compute the factorization
χ
M
=
P
Q
.
{\displaystyle {}\chi _{M}=PQ\,.}
Determine
P
(
M
)
{\displaystyle {}P(M)}
and
Q
(
M
)
{\displaystyle {}Q(M)}
.
Determine
kern
P
(
M
)
{\displaystyle {}\operatorname {kern} P(M)}
and
kern
Q
(
M
)
{\displaystyle {}\operatorname {kern} Q(M)}
.
Show that for a
diagonalizable mapping
φ
:
V
⟶
V
{\displaystyle \varphi \colon V\longrightarrow V}
and every
λ
∈
K
{\displaystyle {}\lambda \in K}
,
the equality
Eig
λ
(
φ
)
=
GeEig
λ
(
φ
)
{\displaystyle {}\operatorname {Eig} _{\lambda }{\left(\varphi \right)}=\operatorname {GeEig} _{\lambda }(\varphi )\,}
holds.
Let
φ
:
V
⟶
V
{\displaystyle \varphi \colon V\longrightarrow V}
be a
trigonalizable
mapping. Show that
φ
{\displaystyle {}\varphi }
is
diagonalizable
if and only if for every
λ
∈
K
{\displaystyle {}\lambda \in K}
,
the equality
Eig
λ
(
φ
)
=
GeEig
λ
(
φ
)
{\displaystyle {}\operatorname {Eig} _{\lambda }{\left(\varphi \right)}=\operatorname {GeEig} _{\lambda }(\varphi )\,}
holds.
Let
φ
:
V
⟶
V
{\displaystyle \varphi \colon V\longrightarrow V}
be a
trigonalizable
endomorphism ,
and let
V
=
H
1
⊕
⋯
⊕
H
m
{\displaystyle {}V=H_{1}\oplus \cdots \oplus H_{m}\,}
denote the
direct sum decomposition
into
generalized eigenspaces
in the sense of
Lemma 26.14
.
Show that there exists a
φ
{\displaystyle {}\varphi }
-invariant flag
V
i
{\displaystyle {}V_{i}}
such that, in this flag, the linear subspaces
H
1
,
H
1
⊕
H
2
,
…
,
H
1
⊕
⋯
⊕
H
j
{\displaystyle H_{1},H_{1}\oplus H_{2},\ldots ,H_{1}\oplus \cdots \oplus H_{j}}
for
j
=
1
,
…
,
m
{\displaystyle {}j=1,\ldots ,m}
occur.
Hand-in-exercises
Determine in
C
[
X
]
{\displaystyle {}\mathbb {C} [X]}
, using the Euclidean algorithm, the
greatest common divisor
of the polynomials
X
3
+
(
2
−
i
)
X
2
+
4
{\displaystyle {}X^{3}+(2-{\mathrm {i} })X^{2}+4}
and
(
3
−
i
)
X
2
+
5
X
−
3
{\displaystyle {}(3-{\mathrm {i} })X^{2}+5X-3}
.
Determine the greatest common divisor of
4199
,
2431
{\displaystyle {}4199,2431}
and
3553
{\displaystyle {}3553}
, and a representation of it as a linear combination of the given numbers.
We consider a digital clock, which exhibits
24
{\displaystyle {}24}
hours,
60
{\displaystyle {}60}
minutes and
60
{\displaystyle {}60}
seconds. However, during carnival, it does not run in steps of seconds, but it adds, starting from the zero position, in every step
11
{\displaystyle {}11}
hours,
11
{\displaystyle {}11}
minutes and
11
{\displaystyle {}11}
seconds. Does, with this way of counting, every possible digital display appear? After how many steps does the zero position reoccur for the first time?
Let
K
{\displaystyle {}K}
be a
field ,
let
V
{\displaystyle {}V}
be a
K
{\displaystyle {}K}
-vector space ,
and let
φ
:
V
⟶
V
{\displaystyle \varphi \colon V\longrightarrow V}
a
linear mapping . Let
P
∈
K
[
X
]
{\displaystyle {}P\in K[X]}
be a polynomial. Show that
kern
(
P
(
φ
)
)
{\displaystyle \operatorname {kern} {\left(P(\varphi )\right)}}
is an
φ
{\displaystyle {}\varphi }
-invariant
linear subspace.
Determine the
generalized eigenspaces
of the matrix
(
4
0
0
5
0
0
0
1
3
0
6
0
0
0
1
0
0
0
0
0
0
5
2
7
0
0
0
0
5
1
0
0
0
0
0
5
)
.
{\displaystyle {\begin{pmatrix}4&0&0&5&0&0\\0&1&3&0&6&0\\0&0&1&0&0&0\\0&0&0&5&2&7\\0&0&0&0&5&1\\0&0&0&0&0&5\end{pmatrix}}.}