Linear mapping/Matrix/Relation/Section
Due to fact, a linear mapping
is determined by the images , , of the standard vectors. Every is a linear combination
and therefore the linear mapping is determined by the elements . So, such a linear map is determined by the elements , , , from the field. We can write such a data set as a matrix. Because of the determination theorem, this holds for linear maps in general, as soon as in both vector spaces bases are fixed.
Let denote a field, and let be an -dimensional vector space with a basis , and let be an -dimensional vector space with a basis .
For a linear mapping
the matrix
where is the -th coordinate of with respect to the basis , is called the describing matrix for with respect to the bases.
For a matrix , the linear mapping determined by
in the sense of fact,
is called the linear mapping determined by the matrix .For a linear mapping , we always assume that everything is with respect to the standard bases, unless otherwise stated. For a linear mapping from a vector space in itself (what is called an endomorphism), one usually takes the same bases on both sides. The identity on a vector space of dimension is described by the identity matrix, with respect to every basis.
Let be a field, and let be an -dimensional vector space with a basis , and let be an -dimensional vector space with a basis . Then the mappings
defined in definition, are inverse
to each other.Proof
is usually described by the matrix with respect to the standard bases on the left and on the right. The result of the matrix multiplication
can be interpreted directly as a point in . The -th column of is the image of the -th standard vector .