Walsh permutation; inversions

Walsh permutation
Inversion (discrete mathematics)
The vectors need to be corrected. See Walsh permutation#Notation warning. Done only for section Nimber multiplication.
Abbreviations
CV Compression vector
CM Compression matrix
Σ Number of ones in the compression matrix
IS Inversion set
# Index number of the finite permutation
IN Inversion number


Stripes

edit

Among the n-bit Walsh permutations are 2n with striped inversion sets.
As seen below they correspond to Walsh functions, i.e. the rows of the Walsh matrix of order 2n.
These permutations under composition form the group Z2n, just like the row numbers under bitwise XOR.

3-bit

edit

An extract of the table of 3-bit Walsh permutations:

CV   CM   D Σ # Permutation
F
IN IS PM FPC Cy
0 1 2 4

[1,0,0;
0,1,0;
0,0,1]

+ 3 0 0 1 2 3   4 5 6 7
0 0 0 0   0 0 0 0
 0

[0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,1,0,0, 0,0,0,0;
0,0,1,0, 0,0,0,0;
0,0,0,1, 0,0,0,0;

0,0,0,0, 1,0,0,0;
0,0,0,0, 0,1,0,0;
0,0,0,0, 0,0,1,0;
0,0,0,0, 0,0,0,1]

&1   0
1 3 5 1

[1,1,1;
1,0,0;
0,1,0]

+ 5 17576 0 7 1 6   2 5 3 4
0 0 1 1   2 2 3 3
12

[0,0,0,0,0,0,0;
1,1,1,1,1,1,0;
0,0,0,0,0,0,0;
1,1,1,1,0,0,0;
0,0,0,0,0,0,0;
1,1,0,0,0,0,0;
0,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,0,0,0, 0,0,0,1;
0,1,0,0, 0,0,0,0;
0,0,0,0, 0,0,1,0;

0,0,1,0, 0,0,0,0;
0,0,0,0, 0,1,0,0;
0,0,0,1, 0,0,0,0;
0,0,0,0, 1,0,0,0]

&3   8   (4+2)>
2 3 6 2

[1,0,0;
1,1,1;
0,1,0]

5 16854 0 1 7 6   2 3 5 4
0 0 0 1   2 2 2 3
10

[0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
1,1,1,1,1,0,0;
1,1,1,1,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
1,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,1,0,0, 0,0,0,0;
0,0,0,0, 0,0,0,1;
0,0,0,0, 0,0,1,0;

0,0,1,0, 0,0,0,0;
0,0,0,1, 0,0,0,0;
0,0,0,0, 0,1,0,0;
0,0,0,0, 1,0,0,0]

&4   9   (3+3)>
3 1 7 3

[1,1,1;
0,1,1;
0,1,0]

6 22622 0 7 6 1   2 5 4 3
0 0 1 2   2 2 3 4
14

[0,0,0,0,0,0,0;
1,1,1,1,1,1,0;
1,1,1,1,1,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
1,1,0,0,0,0,0;
1,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,0,0,0, 0,0,0,1;
0,0,0,0, 0,0,1,0;
0,1,0,0, 0,0,0,0;

0,0,1,0, 0,0,0,0;
0,0,0,0, 0,1,0,0;
0,0,0,0, 1,0,0,0;
0,0,0,1, 0,0,0,0]

&4   9   (3+3)>
4 5 6 4

[1,0,0;
0,1,0;
1,1,1]

+ 5 16680 0 1 2 3   7 6 5 4
0 0 0 0   0 1 2 3
 6

[0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
1,1,1,0,0,0,0;
1,1,0,0,0,0,0;
1,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,1,0,0, 0,0,0,0;
0,0,1,0, 0,0,0,0;
0,0,0,1, 0,0,0,0;

0,0,0,0, 0,0,0,1;
0,0,0,0, 0,0,1,0;
0,0,0,0, 0,1,0,0;
0,0,0,0, 1,0,0,0]

&2   3   (2+2)>
5 7 1 5

[1,1,1;
1,0,0;
1,0,1]

6 22736 0 7 1 6   5 2 4 3
0 0 1 1   2 3 3 4
14

[0,0,0,0,0,0,0;
1,1,1,1,1,1,0;
0,0,0,0,0,0,0;
1,1,1,1,0,0,0;
1,1,1,0,0,0,0;
0,0,0,0,0,0,0;
1,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,0,0,0, 0,0,0,1;
0,1,0,0, 0,0,0,0;
0,0,0,0, 0,0,1,0;

0,0,0,0, 0,1,0,0;
0,0,1,0, 0,0,0,0;
0,0,0,0, 1,0,0,0;
0,0,0,1, 0,0,0,0]

&6  14b   (7)>
6 7 2 6

[1,0,0;
1,1,1;
1,0,1]

+ 6 23454 0 1 7 6   5 4 2 3
0 0 0 1   2 3 4 4
14

[0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
1,1,1,1,1,0,0;
1,1,1,1,0,0,0;
1,1,1,0,0,0,0;
1,1,0,0,0,0,0;
0,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,1,0,0, 0,0,0,0;
0,0,0,0, 0,0,0,1;
0,0,0,0, 0,0,1,0;

0,0,0,0, 0,1,0,0;
0,0,0,0, 1,0,0,0;
0,0,1,0, 0,0,0,0;
0,0,0,1, 0,0,0,0]

&3   8   (4+2)>
7 5 3 7

[1,1,1;
0,1,1;
1,0,1]

+ 7 17702 0 7 6 1   5 2 3 4
0 0 1 2   2 3 3 3
14

[0,0,0,0,0,0,0;
1,1,1,1,1,1,0;
1,1,1,1,1,0,0;
0,0,0,0,0,0,0;
1,1,1,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,0,0,0, 0,0,0,1;
0,0,0,0, 0,0,1,0;
0,1,0,0, 0,0,0,0;

0,0,0,0, 0,1,0,0;
0,0,1,0, 0,0,0,0;
0,0,0,1, 0,0,0,0;
0,0,0,0, 1,0,0,0]

&5  14a   (7)>
Sorting by # gives the permutation (0,4,2,1,7,3,5,6) in the left column, which is reflection right shiftwp(6,5,7) (with the compression matrix

[0,1,1;
1,0,1;
1,1,1]

).

Sorting by Permutation gives the (0,4,2,6, 1,5,3,7) in the left column, which is the bit-reversal permutation wp(4,2,1).

4-bit

edit
Binary Walsh matrix of order 16
# IS CV CM Σ Permutation
F
IN
0 0 ( 1, 2, 4, 8)

[1,0,0,0;
0,1,0,0;
0,0,1,0;
0,0,0,1]

4 ( 0, 1, 2, 3,  4, 5, 6, 7,  8, 9,10,11, 12,13,14,15)
( 0, 0, 0, 0,  0, 0, 0, 0,  0, 0, 0, 0,  0, 0, 0, 0)
0
1 9804424107176 ( 3, 5, 9, 1)

[1,1,1,1;
1,0,0,0;
0,1,0,0;
0,0,1,0]

7 ( 0,15, 1,14,  2,13, 3,12,  4,11, 5,10,  6, 9, 7, 8)
( 0, 0, 1, 1,  2, 2, 3, 3,  4, 4, 5, 5,  6, 6, 7, 7)
56
2 9717242186454 ( 3, 6,10, 2)

[1,0,0,0;
1,1,1,1;
0,1,0,0;
0,0,1,0]

7 ( 0, 1,15,14,  2, 3,13,12,  4, 5,11,10,  6, 7, 9, 8)
( 0, 0, 0, 1,  2, 2, 2, 3,  4, 4, 4, 5,  6, 6, 6, 7)
52
3 11112138397022 ( 1, 7,11, 3)

[1,1,1,1;
0,1,1,1;
0,1,0,0;
0,0,1,0]

9 ( 0,15,14, 1,  2,13,12, 3,  4,11,10, 5,  6, 9, 8, 7)
( 0, 0, 1, 2,  2, 2, 3, 4,  4, 4, 5, 6,  6, 6, 7, 8)
60
4 9710017245480 ( 5, 6,12, 4)

[1,0,0,0;
0,1,0,0;
1,1,1,1;
0,0,1,0]

7 ( 0, 1, 2, 3, 15,14,13,12,  4, 5, 6, 7, 11,10, 9, 8)
( 0, 0, 0, 0,  0, 1, 2, 3,  4, 4, 4, 4,  4, 5, 6, 7)
44
5 11118325501136 ( 7, 1,13, 5)

[1,1,1,1;
1,0,0,0;
1,0,1,1;
0,0,1,0]

9 ( 0,15, 1,14, 13, 2,12, 3,  4,11, 5,10,  9, 6, 8, 7)
( 0, 0, 1, 1,  2, 3, 3, 4,  4, 4, 5, 5,  6, 7, 7, 8)
60
6 11205500164254 ( 7, 2,14, 6)

[1,0,0,0;
1,1,1,1;
1,0,1,1;
0,0,1,0]

9 ( 0, 1,15,14, 13,12, 2, 3,  4, 5,11,10,  9, 8, 6, 7)
( 0, 0, 0, 1,  2, 3, 4, 4,  4, 4, 4, 5,  6, 7, 8, 8)
60
7 9810691044902 ( 5, 3,15, 7)

[1,1,1,1;
0,1,1,1;
1,0,1,1;
0,0,1,0]

11 ( 0,15,14, 1, 13, 2, 3,12,  4,11,10, 5,  9, 6, 7, 8)
( 0, 0, 1, 2,  2, 3, 3, 3,  4, 4, 5, 6,  6, 7, 7, 7)
60
8 9709968804480 ( 9,10,12, 8)

[1,0,0,0;
0,1,0,0;
0,0,1,0;
1,1,1,1]

7 ( 0, 1, 2, 3,  4, 5, 6, 7, 15,14,13,12, 11,10, 9, 8)
( 0, 0, 0, 0,  0, 0, 0, 0,  0, 1, 2, 3,  4, 5, 6, 7)
28
9 11118365775656 (11,13, 1, 9)

[1,1,1,1;
1,0,0,0;
0,1,0,0;
1,1,0,1]

9 ( 0,15, 1,14,  2,13, 3,12, 11, 4,10, 5,  9, 6, 8, 7)
( 0, 0, 1, 1,  2, 2, 3, 3,  4, 5, 5, 6,  6, 7, 7, 8)
60
10 11205547694934 (11,14, 2,10)

[1,0,0,0;
1,1,1,1;
0,1,0,0;
1,1,0,1]

9 ( 0, 1,15,14,  2, 3,13,12, 11,10, 4, 5,  9, 8, 6, 7)
( 0, 0, 0, 1,  2, 2, 2, 3,  4, 5, 6, 6,  6, 7, 8, 8)
60
11 9810651495902 ( 9,15, 3,11)

[1,1,1,1;
0,1,1,1;
0,1,0,0;
1,1,0,1]

11 ( 0,15,14, 1,  2,13,12, 3, 11, 4, 5,10,  9, 6, 7, 8)
( 0, 0, 1, 2,  2, 2, 3, 4,  4, 5, 5, 5,  6, 7, 7, 7)
60
12 11212772635560 (13,14, 4,12)

[1,0,0,0;
0,1,0,0;
1,1,1,1;
1,1,0,1]

9 ( 0, 1, 2, 3, 15,14,13,12, 11,10, 9, 8,  4, 5, 6, 7)
( 0, 0, 0, 0,  0, 1, 2, 3,  4, 5, 6, 7,  8, 8, 8, 8)
60
13 9804464392016 (15, 9, 5,13)

[1,1,1,1;
1,0,0,0;
1,0,1,1;
1,1,0,1]

11 ( 0,15, 1,14, 13, 2,12, 3, 11, 4,10, 5,  6, 9, 7, 8)
( 0, 0, 1, 1,  2, 3, 3, 4,  4, 5, 5, 6,  6, 6, 7, 7)
60
14 9717289730334 (15,10, 6,14)

[1,0,0,0;
1,1,1,1;
1,0,1,1;
1,1,0,1]

11 ( 0, 1,15,14, 13,12, 2, 3, 11,10, 4, 5,  6, 7, 9, 8)
( 0, 0, 0, 1,  2, 3, 4, 4,  4, 5, 6, 6,  6, 6, 6, 7)
60
15 11112098838182 (13,11, 7,15)

[1,1,1,1;
0,1,1,1;
1,0,1,1;
1,1,0,1]

13 ( 0,15,14, 1, 13, 2, 3,12, 11, 4, 5,10,  6, 9, 8, 7)
( 0, 0, 1, 2,  2, 3, 3, 3,  4, 5, 5, 5,  6, 6, 7, 8)
60
Sorting by # gives the (0, 8,4,2,14, 1,13,11,7, 15,3,5,9, 6,10,12) in the left column, which is reflection right shiftwp(12,10, 9, 7) (with the compression matrix

[0,0,1,1;
0,1,0,1;
1,0,0,1;
1,1,1,0]

).

Sorting by Permutation gives the (0,8,4,12, 2,10,6,14, 1,9,5,13, 3,11,7,15) in the left column, which is the bit-reversal permutation wp( 8, 4, 2, 1).

Compression matrices

edit


The CM of the n-th permutation is a matrix B with horizontal stripes for the binary digits of n (gray lines in the image), XORed with a modified unity matrix U (black dots in the image).
U is modified by including an empty row where n has its lowest binary digit (Sloane'sA001511). It pushes the other rows of the unity matrix down, and the last row "out of the matrix".


Bended stripes

edit

Among the n-bit Walsh permutations are 2n-1 whose inversion sets show bended stripes.
They correspond to Walsh functions, i.e. the rows of the Walsh matrix of order 2n-1.
These permutations under composition form the group Z2n-1, just like the row numbers under bitwise XOR.

3-bit

edit
CV   CM   D # Permutation
F
IN IS PM FPC Cy
0 1 2 4

[1,0,0;
0,1,0;
0,0,1]

+ 0 0 1 2 3   4 5 6 7
0 0 0 0   0 0 0 0
 0

[0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,1,0,0, 0,0,0,0;
0,0,1,0, 0,0,0,0;
0,0,0,1, 0,0,0,0;

0,0,0,0, 1,0,0,0;
0,0,0,0, 0,1,0,0;
0,0,0,0, 0,0,1,0;
0,0,0,0, 0,0,0,1]

&1   0
1 4 7 1

[0,1,1;
0,1,0;
1,1,0]

3776 0 6 2 4   3 5 1 7
0 0 1 1   2 1 5 0
10

[0,0,0,0,0,0,0;
1,1,1,1,1,0,0;
0,0,0,1,0,0,0;
1,0,1,0,0,0,0;
0,1,0,0,0,0,0;
1,0,0,0,0,0,0;
0,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,0,0,0, 0,0,1,0;
0,0,1,0, 0,0,0,0;
0,0,0,0, 1,0,0,0;

0,0,0,1, 0,0,0,0;
0,0,0,0, 0,1,0,0;
0,1,0,0, 0,0,0,0;
0,0,0,0, 0,0,0,1]

&2   3   (2+2)>
2 7 4 2

[1,0,0;
1,0,1;
1,1,0]

414 0 1 5 4   3 2 6 7
0 0 0 1   2 3 0 0
 6

[0,0,0,0,0,0,0;
0,0,0,0,0,0,0;
1,1,1,0,0,0,0;
1,1,0,0,0,0,0;
1,0,0,0,0,0,0;
0,0,0,0,0,0,0;
0,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,1,0,0, 0,0,0,0;
0,0,0,0, 0,1,0,0;
0,0,0,0, 1,0,0,0;

0,0,0,1, 0,0,0,0;
0,0,1,0, 0,0,0,0;
0,0,0,0, 0,0,1,0;
0,0,0,0, 0,0,0,1]

&2   3   (2+2)>
3 2 1 7

[0,1,1;
1,0,1;
0,0,1]

4142 0 6 5 3   4 2 1 7
0 0 1 2   2 4 5 0
14

[0,0,0,0,0,0,0;
1,1,1,1,1,0,0;
1,1,1,1,0,0,0;
0,1,1,0,0,0,0;
1,1,0,0,0,0,0;
1,0,0,0,0,0,0;
0,0,0,0,0,0,0]

[1,0,0,0, 0,0,0,0;
0,0,0,0, 0,0,1,0;
0,0,0,0, 0,1,0,0;
0,0,0,1, 0,0,0,0;

0,0,0,0, 1,0,0,0;
0,0,1,0, 0,0,0,0;
0,1,0,0, 0,0,0,0;
0,0,0,0, 0,0,0,1]

&2   3   (2+2)>

Sorting by # or Permutation gives (0,2,1,3) in the left column, which is the bit-reversal permutation wp(2,1).
Sorting by CV gives (0,3,1,2) in the left column, which is wp(3,1).


4-bit

edit
# IS CV CM Permutation
F
IN
0 0 ( 1, 2, 4, 8)

[1,0,0,0;
0,1,0,0;
0,0,1,0;
0,0,0,1]

( 0, 1, 2, 3,  4, 5, 6, 7,  8, 9,10,11, 12,13,14,15)
( 0, 0, 0, 0,  0, 0, 0, 0,  0, 0, 0, 0,  0, 0, 0, 0)
0
1 1144441325096 ( 8,11,13, 1)

[0,1,1,1;
0,1,0,0;
0,0,1,0;
1,1,1,0]

( 0,14, 2,12,  4,10, 6, 8,  7, 9, 5,11,  3,13, 1,15)
( 0, 0, 1, 1,  2, 2, 3, 3,  4, 3, 7, 2, 10, 1,13, 0)
52
2 73376328534 (11, 8,14, 2)

[1,0,0,0;
1,0,1,1;
0,0,1,0;
1,1,1,0]

( 0, 1,13,12,  4, 5, 9, 8,  7, 6,10,11,  3, 2,14,15)
( 0, 0, 0, 1,  2, 2, 2, 3,  4, 5, 2, 2, 10,11, 0, 0)
44
3 1209107634782 ( 2, 1, 7,11)

[0,1,1,1;
1,0,1,1;
0,0,1,0;
0,0,0,1]

( 0,14,13, 3,  4,10, 9, 7,  8, 6, 5,11, 12, 2, 1,15)
( 0, 0, 1, 2,  2, 2, 3, 4,  4, 6, 7, 2,  2,12,13, 0)
60
4 303182760 (13,14, 8, 4)

[1,0,0,0;
0,1,0,0;
1,1,0,1;
1,1,1,0]

( 0, 1, 2, 3, 11,10, 9, 8,  7, 6, 5, 4, 12,13,14,15)
( 0, 0, 0, 0,  0, 1, 2, 3,  4, 5, 6, 7,  0, 0, 0, 0)
28
5 1144707321296 ( 4, 7, 1,13)

[0,1,1,1;
0,1,0,0;
1,1,0,1;
0,0,0,1]

( 0,14, 2,12, 11, 5, 9, 7,  8, 6,10, 4,  3,13, 1,15)
( 0, 0, 1, 1,  2, 3, 3, 4,  4, 6, 3, 9, 10, 1,13, 0)
60
6 73677162654 ( 7, 4, 2,14)

[1,0,0,0;
1,0,1,1;
1,1,0,1;
0,0,0,1]

( 0, 1,13,12, 11,10, 6, 7,  8, 9, 5, 4,  3, 2,14,15)
( 0, 0, 0, 1,  2, 3, 4, 4,  4, 4, 8, 9, 10,11, 0, 0)
60
7 1209371443622 (14,13,11, 7)

[0,1,1,1;
1,0,1,1;
1,1,0,1;
1,1,1,0]

( 0,14,13, 3, 11, 5, 6, 8,  7, 9,10, 4, 12, 2, 1,15)
( 0, 0, 1, 2,  2, 3, 3, 3,  4, 3, 3, 9,  2,12,13, 0)
60

Sorting by # or Permutation gives (0,4,2,6, 1,5,3,7) in the left column, which is the bit-reversal permutation wp(4,2,1).
Sorting by CV gives (0,3,5,6, 1,2,4,7) in the left column, which is wp(7,1,2).

Compression matrices

edit


The CM are matrices with an even number of horizontal stripes (gray lines in the image) XORed with the unity matrix (black dots in the image).
The order by the evil numbers (Sloane'sA001969) of the matrices, used in the image, corresponds to the lexicographical order of the compression vectors.

Bit permutations

edit
Walsh permutation; bit permutation
Inversion set of wp( 4, 1, 8, 2)
All columns are symmetrical.
Inversion set of wp(14,13,11, 7)
Here the symmetry is easily seen.
Cycle graph of the bit permutations
Permutations of 4 elements
Symmetric group S4

The inversion sets in the table below have a common property that is not easily seen with this layout of the triangles:
They are symmetric to the diagonal that starts in the top right corner. (So all columns are symmetrical.)
This is also the case for all complemented bit permutations (with compression vectors that are permutations of (14,13,11, 7)).

# IS CV
0 0 ( 1, 2, 4, 8)
1 87181920722 ( 2, 1, 4, 8)
2 13412045088 ( 1, 4, 2, 8)
3 101069338632 ( 4, 1, 2, 8)
4 262496507810 ( 2, 4, 1, 8)
5 269202530354 ( 4, 2, 1, 8)
6 175795200 ( 1, 2, 8, 4)
7 87357715922 ( 2, 1, 8, 4)
8 13588646400 ( 1, 8, 2, 4)
9 101249608320 ( 8, 1, 2, 4)
10 262679639762 ( 2, 8, 1, 4)
11 269386065362 ( 8, 2, 1, 4)
12 40237747488 ( 1, 4, 8, 2)
13 127895041032 ( 4, 1, 8, 2)
14 40325645088 ( 1, 8, 4, 2)
15 127986607008 ( 8, 1, 4, 2)
16 303216964872 ( 4, 8, 1, 2)
17 303260913672 ( 8, 4, 1, 2)
18 613140355490 ( 2, 4, 8, 1)
19 619846378034 ( 4, 2, 8, 1)
20 613228253090 ( 2, 8, 4, 1)
21 619934678690 ( 8, 2, 4, 1)
22 633259229234 ( 4, 8, 2, 1)
23 633303178034 ( 8, 4, 2, 1)

Nimber multiplication

edit
Walsh permutation; nimber multiplication

Images: Inversion set of a 4-bit Walsh permutation; nimber multiplication

# CV Permutation F IN
0 ( 1, 2, 4, 8) (0, 1, 2, 3,   4, 5, 6, 7,   8, 9,10,11,  12,13,14,15) (0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0) 0
13827898032492 ( 2, 3, 8,12) (0, 2, 3, 1,   8,10,11, 9,  12,14,15,13,   4, 6, 7, 5) (0, 0, 0, 2,   0, 0, 0, 2,   0, 0, 0, 2,   8, 8, 8,10) 40
7001306732168 ( 3, 1,12, 4) (0, 3, 1, 2,  12,15,13,14,   4, 7, 5, 6,   8,11, 9,10) (0, 0, 1, 1,   0, 0, 1, 1,   4, 4, 5, 5,   4, 4, 5, 5) 40
19217812814448 ( 4, 8, 6,11) (0, 4, 8,12,   6, 2,14,10,  11,15, 3, 7,  13, 9, 5, 1) (0, 0, 0, 0,   2, 4, 0, 2,   2, 0, 8, 6,   2, 6,10,14) 56
1630614229512 ( 5,10, 2, 3) (0, 5,10,15,   2, 7, 8,13,   3, 6, 9,12,   1, 4,11,14) (0, 0, 0, 0,   3, 2, 2, 1,   6, 5, 3, 2,  11, 9, 3, 1) 48
15433122573720 ( 6,11,14, 7) (0, 6,11,13,  14, 8, 5, 3,   7, 1,12,10,   9,15, 2, 4) (0, 0, 0, 0,   0, 3, 5, 6,   4, 8, 2, 4,   5, 0,12,11) 60
5564988000144 ( 7, 9,10,15) (0, 7, 9,14,  10,13, 3, 4,  15, 8, 6, 1,   5, 2,12,11) (0, 0, 0, 0,   1, 1, 5, 5,   0, 5, 7,10,   8,11, 3, 4) 60
17445432818676 ( 8,12,11,13) (0, 8,12, 4,  11, 3, 7,15,  13, 5, 1, 9,   6,14,10, 2) (0, 0, 0, 2,   1, 4, 3, 0,   1, 6, 9, 4,   7, 1, 5,13) 56
3551688986892 ( 9,14,15, 5) (0, 9,14, 7,  15, 6, 1, 8,   5,12,11, 2,  10, 3, 4,13) (0, 0, 0, 2,   0, 4, 5, 3,   6, 2, 3, 9,   4,10,10, 2) 60
10678227659604 (10,15, 3, 1) (0,10,15, 5,   3, 9,12, 6,   1,11,14, 4,   2, 8,13, 7) (0, 0, 0, 2,   3, 2, 1, 4,   7, 2, 1, 8,  10, 6, 2, 8) 56
10169232103620 (11,13, 7, 9) (0,11,13, 6,   7,12,10, 1,   9, 2, 4,15,  14, 5, 3, 8) (0, 0, 0, 2,   2, 1, 3, 6,   4, 7, 7, 0,   1, 9,11, 7) 60
15737148505928 (12, 4,13, 6) (0,12, 4, 8,  13, 1, 9, 5,   6,10, 2,14,  11, 7,15, 3) (0, 0, 1, 1,   0, 4, 2, 4,   4, 2, 8, 0,   3, 7, 0,12) 48
5084423155256 (13, 6, 9,14) (0,13, 6,11,   9, 4,15, 2,  14, 3, 8, 5,   7,10, 1,12) (0, 0, 1, 1,   2, 4, 0, 6,   1, 7, 5, 7,   6, 4,13, 3) 60
12454407149960 (14, 7, 5,10) (0,14, 7, 9,   5,11, 2,12,  10, 4,13, 3,  15, 1, 8, 6) (0, 0, 1, 1,   3, 1, 5, 1,   3, 7, 1, 9,   0,12, 7, 9) 60
8566683323240 (15, 5, 1, 2) (0,15, 5,10,   1,14, 4,11,   2,13, 7, 8,   3,12, 6, 9) (0, 0, 1, 1,   3, 1, 4, 2,   6, 2, 5, 5,   9, 3, 8, 6) 56