Walsh permutation; bit permutation
Walsh permutation ![]() |
The term bit permutation was chosen by the author for Walsh permutations whose compression matrices are permutation matrices.
Ordered in rows like the corresponding finite permutations ( A055089) they form the infinite array
A195665.
3-bitEdit
An extract of the table of 3-bit Walsh permutations:
4-bitEdit
Applying a permutation pn of 0,...,3 on the reverse binary digits of numbers 0,...,15 gives a permutation Pn of these 16 elements.
p23 permutes (0,1,2,3) into (3,2,1,0). P23 = wp(23,22,21,20) = wp(8,4,2,1) is the 4-bit bit-reversal permutation.
Applying all permutations p0,...,p23 of 0,...,3 on the digits of 0,...,15 gives the bit permutations P0,...,P23, which also form the symmetric group S4.
But the big permutations have to be composed in a different way, to get corresponding results:
The 4×4 matrices of the permutations pn are the transposed compression matrices
of the Walsh permutations Pn, here represented by their 16×16 matrices.
With compression vectors |
---|
|
24×16 matrix |
---|
This is the top left 24x16 submatrix of A195665. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 2 1 3 4 6 5 7 8 10 9 11 12 14 13 15 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15 0 2 4 6 1 3 5 7 8 10 12 14 9 11 13 15 0 4 1 5 2 6 3 7 8 12 9 13 10 14 11 15 0 4 2 6 1 5 3 7 8 12 10 14 9 13 11 15 0 1 2 3 8 9 10 11 4 5 6 7 12 13 14 15 0 2 1 3 8 10 9 11 4 6 5 7 12 14 13 15 0 1 4 5 8 9 12 13 2 3 6 7 10 11 14 15 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 0 4 1 5 8 12 9 13 2 6 3 7 10 14 11 15 0 4 2 6 8 12 10 14 1 5 3 7 9 13 11 15 0 1 8 9 2 3 10 11 4 5 12 13 6 7 14 15 0 2 8 10 1 3 9 11 4 6 12 14 5 7 13 15 0 1 8 9 4 5 12 13 2 3 10 11 6 7 14 15 0 2 8 10 4 6 12 14 1 3 9 11 5 7 13 15 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 0 4 8 12 2 6 10 14 1 5 9 13 3 7 11 15 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 8 2 10 1 9 3 11 4 12 6 14 5 13 7 15 0 8 1 9 4 12 5 13 2 10 3 11 6 14 7 15 0 8 2 10 4 12 6 14 1 9 3 11 5 13 7 15 0 8 4 12 1 9 5 13 2 10 6 14 3 11 7 15 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 |