Trigonometry/Trigonometric Analysis

Welcome to the Lesson of Analytical Trigonometry
Part of the School of Olympiads

This topic deals with the analytical aspects of Trigonometry. Widely this topic covers Trigonometric Identities and Equations. And important part of this topic is trigonometry through Complex Numbers by the use of De Moivre's Law and its application.


Function Inverse function Reciprocal Inverse reciprocal
sine sin arcsine arcsin cosecant csc arccosecant arccsc
cosine cos arccosine arccos secant sec arcsecant arcsec
tangent tan arctangent arctan cotangent cot arccotangent arccot

Theorems

edit

Identities

edit

Basic Relationships

edit
Pythagorean trigonometric identity  
Ratio identity  


Each trigonometric function in terms of the other five.
Function            
             
             
             
             
             
             


Historic Shorthands
Name(s) Abbreviation(s) Value
versed sine, versine  
 
 
versed cosine, vercosine,
coversed sine, coversine
 
 
 
 
haversed sine, haversine  
 
 
haversed cosine, havercosine,
hacoversed sine, hacoversine,
cohaversed sine, cohaversine
 
 
 
 
exterior secant, exsecant    
exterior cosecant, excosecant    


Symmetries
Reflected in   Reflected in  
(co-function identities)
Reflected in  
     


Periodicity and Shifts
Shift by π/2 Shift by π
Period for tan and cot
Shift by 2π
Period for sin, cos, csc and sec
     


Angle Sum Identities

edit

Complex Numbers, De Moivre's Law and Argand Plane

edit

Examples

edit

Resources

edit

Textbooks

edit

Practice Questions

edit

1  

 

2  

 

3  

 


edit

Active participants

edit

The histories of Wikiversity pages indicate who the active participants are. If you are an active participant in this division, you can list your name here (this can help small divisions grow and the participants communicate better; for large divisions a list of active participants is not needed).