Talk:PlanetPhysics/Fundamental Notations in Physics

Original TeX Content from PlanetPhysics Archive

edit
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: notations of fundamental concepts in physics
%%% Primary Category Code: 00.
%%% Filename: FundamentalNotationsInPhysics.tex
%%% Version: 82
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 This is a contributed topic entry (in progress) listing notations of fundamental quantities and \htmladdnormallink{observables}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} in physics, as well as a listing of related notations of mathematical \htmladdnormallink{concepts}{http://planetphysics.us/encyclopedia/PreciseIdea.html} employed in \htmladdnormallink{mathematical physics and physical mathematics}{http://planetphysics.us/encyclopedia/QAT.html}.
\subsection{Notations of Fundamental Physical Quantities, Observables and Related Mathematical Concepts}

\subsubsection{A List of Notations for Fundamental Quantities, Observables
Functions, Operators, Tensors and Matrices in Physics}

\begin{enumerate}
\item $m= \, Mass$
\item $n, \, or \, N = Number \, of \, Particles$ in a \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} \item $\mathcal{R} = \, System\, of \, Reference$ or (Relative) \htmladdnormallink{reference frame}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html} \item $ \vec{r}$ or ${\bf r}= \, position \, in \, space$ (relative to a system of reference $\mathcal{R}$ or coordinate system)
\item $\mathcal{S} = \, Physical \, Space$
\item $A = \, Surface \, Area$
\item $l = \, length$
\item $ d = r_2 - r_1=  \, the \, distance$ between two points of relative \htmladdnormallink{positions}{http://planetphysics.us/encyclopedia/Position.html} $\vec{r}_1$ and $\vec{r}_2$
\item $V = \, Volume$
\item $\rho = \, Density$
\item $\sigma = \, Density \, of \, States$ (for example in a \htmladdnormallink{solid}{http://planetphysics.us/encyclopedia/CoIntersections.html})
\item $ \eta = \, Viscosity$ of a Fluid
\item $\sigma_S =\, Surface \, Tension$
\item $ t = \, Time$ (relative to a system of reference $\mathcal{R}$)
\item {\bf v} or $ \vec{v} = Velocity$ in \htmladdnormallink{Newtonian mechanics}{http://planetphysics.us/encyclopedia/MathematicalFoundationsOfQuantumTheories.html} \item ${\bf q} =\, Velocity$ observable or, respectively \htmladdnormallink{operator}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} in theoretical and quantum physics
\item $\vec{p}= \, Momentum$ in \htmladdnormallink{classical mechanics}{http://planetphysics.us/encyclopedia/MathematicalFoundationsOfQuantumTheories.html} and relativity theories.
\item ${\bf p} = \, Momentum \, Operator$ in \htmladdnormallink{quantum mechanics}{http://planetphysics.us/encyclopedia/QuantumParadox.html}, \htmladdnormallink{QFT}{http://planetphysics.us/encyclopedia/HotFusion.html}, etc.
\item $\vec{J} = \, Total, \, Quantized \, Angular \, Momentum$
\item $ \vec{a} =\, acceleration$
\item $ \vec{g} =\, gravitational \, acceleration$
\item $\vec{F} = \, Force$
\item $\vec{F}_v = \, Vector \, Field$
\item $Q = \, Electrical \, Charge$
\item $T_{ij}, \, T^{ij}, \, g_{\mu \nu}, \, etc.\, = \, Tensor$ quantities
\item $g_{\mu \nu} = \, Riemannian \, metric \, tensor$ in \htmladdnormallink{general relativity}{http://planetphysics.us/encyclopedia/SR.html} \item $E = \, Energy$ (term coined by Thomas Young in 1807)
\item $E_i = \mathbb{U} = Internal \, Energy$
\item $U= \, Potential\, Energy$
\item $E_K =\, Kinetic\, Energy$
\item $\mathcal(H) = \, Hamiltonian \, operator$ or \htmladdnormallink{Schr\"odinger operator}{http://planetphysics.us/encyclopedia/Hamiltonian2.html} \item $\vec{E} = \, Electrical\, Field$
\item $\vec{\mu}_E = \, Electric \, Dipole$
\item $\vec{m}= \, Magnetic \, Dipole$
\item $\vec{H}= \, Magnetic \, Field$
\item $H= Hadron \, number$
\item $I_z = Isospin \, z-axis \, component$
\item $\F = \, Flavor \, Quantum \, numbers$
\item $C_h = Charm \, observable$
\item $S = \, Strangeness \, number$
\item $Y= B + S = \, Hypercharge$
\item $C_{ol} = Color \, observable$ (in \htmladdnormallink{QCD}{http://planetphysics.us/encyclopedia/HotFusion.html})
\item $ u = \, up \, quark$
\item $\overline{u} =  up \, Anti-quark$
\item $ d= down \, quark$
\item $ s = strange \, quark$
\item $ c= \, charmed \, quark$
\item $ b= \, bottom \, quark$
\item $ t= \, top \, quark$
\item $J/psi$ \htmladdnormallink{particle}{http://planetphysics.us/encyclopedia/Particle.html} \item $\vec{B}= \, Magnetic \, Inductance$
\item $B = \, Baryon \, number$
\item $\vec{M}= \, Magnetization$
\item $ \mathcal{I} = \, Spin$ and \emph{\htmladdnormallink{spin}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} Operator}
\item $EMF = \, Electromagnetic Field$
\item $\mu = \, Magnetic \, Permeability$
\item $\chi = \, Magnetic \, Susceptibility$
\item $P =\, Parity$
\item $\vec{P} = \, Electrical \, Polarization$
\item $V_E = \, Electrical \, Potential$
\item $I = \, Electrical \, current$
\item $ i = \, Current \,, Density$
\item $C = \, Capacitance$
\item $L = \, Inductance$
\item $\mathbb{I} = \, Impedance$
\item $ R = \, Electrical \, Resistance$
\item $\E \, or\, \mu = \, Electrochemical Potential$
\item $ a = \, activity$
\item $T = Temperature$
\item $\Delta H = \, Exchanged \, Heat$
\item $\L = \, Mechanical \, Work$
\item $S = \, Entropy$ (\htmladdnormallink{Thermodynamic}{http://planetphysics.us/encyclopedia/Thermodynamics.html} \htmladdnormallink{state function}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html})
\item $\Delta G =\, Gibbs \, Free\, Energy\, change$
\item $\Delta \mathbb{H} = \, Helmholtz \, Free \, Energy \, change$
\item ${\sigma}_{ij} =\, Pauli \, matrices$
\item $CQG = Compact \, Quantum \, Groups$
\item $QG = \mathcal{G} = \, Quantum Groupoids$
\item $QCG = \,Quantum \, Compact\, Groupoids$
\item $ QFG = \, Quantum \, Fundamental \, Groupoid$
\item $ \A =\, Abelian \, category$
\item $ \mathcal{C} = \, Category$
\item $\bf{G} = \, Group$
\item $ \G = \, Groupoid$
\item $ {\bf G}_S = \, Symmetry \, Groups$
\item $ {\bf g} = Lie \, group$
\item $ \widetilde{\bf g} =\, Lie \, algebra$
\item $SU =\, Special \, Unitary \, Groups$
\item K
\item L

\end{enumerate}

\subsubsection{Fundamental Constants in Physics}

\begin{itemize}
\item $c = \, magnitude \, of \,\, light \, velocity $ in vacuum
\item ${\epsilon}_0 =\, dielectric\, constant$, or \emph{electrical permitivity} of vacuum
\item ${\mu}_0 =\, magnetic \, permitivity \, (or \, permeability)$ of vacuum
\item $h = \, Planck's$ constant
\item $k =\, Boltzmann$ constant
\item $n = \, Avogadro's \, number$
\item Electron \htmladdnormallink{mass}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} (at rest), $e$
\item Proton mass (at rest) $m_P$
\item \emph{Fine-structure constant}, $ \alpha \, $, is the emf coupling constant (that characterizes the strength of the electromagnetic interaction);
$$ \alpha \, =  \ 7.297\,352\,570(5) \times 10^{-3}\ =\ \frac{1}{137.035\,999\,070(98)} ,$$ (i.e., approximately $\frac{1}{137}$)
\item \htmladdnormallink{Neutrino}{http://planetphysics.us/encyclopedia/Neutrino.html} masses (at rest), $m_{\nu}$
\item Electron \htmladdnormallink{charge}{http://planetphysics.us/encyclopedia/Charge.html}, $m_e$
\item Electron Magnetic Moment, $\mu_e$
\item Proton Magnetic Moment, $\mu_p$
\item \htmladdnormallink{neutron}{http://planetphysics.us/encyclopedia/Pions.html} Magnetic Moment, $\mu_n$
\item Gyromagnetic Ratios of \htmladdnormallink{nucleons}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} or Nuclei, $\gamma_n$
\item \htmladdnormallink{gyromagnetic ratio}{http://planetphysics.us/encyclopedia/MolecularOrbitals.html} of the Electron, $\gamma_e$
\item Gyromagnetic Ratio of the \htmladdnormallink{Muon}{http://planetphysics.us/encyclopedia/MuonLepton.html}, $\gamma_{\mu}$
\item $G = \, Universal\, Gravitational\, Constant$
\item $ \lambda = \, Cosmological\, Constant$ (introduced by \htmladdnormallink{Einstein}{http://planetphysics.us/encyclopedia/AlbertEinstein.html} in Relativity Theory)
\item C
\item D
\item E
\end{itemize}

\end{document}
Return to "PlanetPhysics/Fundamental Notations in Physics" page.