Protein Crystallography project

This is a Protein Crystallography Project concerned with the Determination of Protein Structures in Crystals and in Solutions with electrolytes by X-ray Diffraction, neutron diffraction, light scattering, Vibrational Circular Dichroism (VCD) and 2D-NMR.

Course on Protein Biochemistry

edit

Course and Lecture Notes on X-ray Diffraction by Protein Crystals

edit
 
Model of Cytochrome C Oxidase 1OCC in a Membrane

Course and Lecture Notes on Neutron Diffraction by Protein Crystals

edit

Course and Lecture Notes on 2D-NMR Determination of Protein Structure in Solution

edit

Lecture Notes of NMR on Magnetically-oriented Protein Microcrystals in suspension

edit
 
HahnEchoDecay: click on image to start the animation

Course on Computer Modeling of Protein Structure and Dynamics

edit

Lecture Notes on Paracrystal Theory and Quasi-crystals

edit
 
Cartoon representation of the zinc-finger motif of proteins. The zinc ion (green) is coordinated by two histidine and two cysteine amino acid residues. Based on the X-ray structure of PDB
 
Created by Isaac Yonemoto. created with en:pymol, en:inkscape, and en:gimp from NMR structure 1ai0 in the en:pdb. Ref: Chang, X., Jorgensen, A.M., Bardrum, P., Led, J.J.
 
Created by Isaac Yonemoto created with en:pymol, en:inkscape, and en:gimp from NMR structure 1ai0 in the en:pdb. Ref: Chang, X., Jorgensen, A.M., Bardrum, P., Led, J.J.

Amino Acid Structures and Properties

edit

The 20 amino acids encoded directly by the genetic code can be divided into several groups based on their properties. Important factors are charge, hydrophilicity or hydrophobicity, size and functional groups.Amino acids are usually classified by the properties of their side chain into four groups. The side chain can make an amino acid a weak acid or a weak base, and a hydrophile if the side chain is polar or a hydrophobe if it is nonpolar.

 
An α-amino acid. The CαH atom is omitted in the diagram.

Protein amino acids are combined into a single polypeptide chain in a condensation reaction. This reaction is catalysed by the ribosome in a process known as translation.


Essential Nonessential
Isoleucine Alanine
Leucine Asparagine
Lysine Aspartic Acid
Methionine Cysteine*
Phenylalanine Glutamic Acid
Threonine Glutamine*
Tryptophan Glycine*
Valine Proline*
Selenocysteine*
Serine*
Tyrosine*
Arginine*
Histidine*
Ornithine*
Taurine*

Polar and non polar amino acids and their single and three letter code

Amino Acid Three Letter code Single Letter code Side chain polarity Side chain charge (pH 7.4) Hydropathy index Absorbance λmax(nm) ε at λmax (x10−3 M−1 cm−1)
Alanine Ala A nonpolar neutral 1.8
Arginine Arg R polar positive −4.5
Asparagine Asn N polar neutral −3.5
Aspartic acid Asp D polar negative −3.5
Cysteine Cys C nonpolar neutral 2.5 250 0.3
Glutamic acid Glu E polar negative −3.5
Glutamine Gln Q polar neutral −3.5
Glycine Gly G nonpolar neutral −0.4
Histidine His H polar positive(10%)

neutral(90%)

−3.2 211 5.9
Isoleucine Ile I nonpolar neutral 4.5
Leucine Leu L nonpolar neutral 3.8
Lysine Lys K polar positive −3.9
Methionine Met M nonpolar neutral 1.9
Phenylalanine Phe F nonpolar neutral 2.8 257, 206, 188 0.2, 9.3, 60.0
Proline Pro P nonpolar neutral −1.6
Serine Ser S polar neutral −0.8
Threonine Thr T polar neutral −0.7
Tryptophan Trp W nonpolar neutral −0.9 280, 219 5.6, 47.0
Tyrosine Tyr Y polar neutral −1.3 274, 222, 193 1.4, 8.0, 48.0
Valine Val V nonpolar neutral 4.2

Additionally, there are two additional amino acids which are incorporated by overriding stop codons:

21st and 22nd amino acids 3-Letter 1-Letter
Selenocysteine Sec U
Pyrrolysine Pyl O

In addition to the specific amino acid codes, placeholders are used in cases where chemical or crystallographic analysis of a peptide or protein can not conclusively determine the identity of a residue.

Ambiguous Amino Acids 3-Letter 1-Letter
Asparagine or aspartic acid Asx B
Glutamine or glutamic acid Glx Z
Leucine or Isoleucine Xle J
Unspecified or unknown amino acid Xaa X
edit

The 20 naturally occurring amino acids have different physical and chemical properties, including their electrostatic charge, pKa, hydrophobicity, size and specific functional groups. These properties play a major role in molding protein structure. The salient features of amino acids are described below in the table.

Amino Acid Abbrev. Remarks
Alanine
 
A Ala Very abundant, very versatile. More stiff than glycine, but small enough to pose only small steric limits for the protein conformation. It behaves fairly neutrally, and can be located in both hydrophilic regions on the protein outside and the hydrophobic areas inside.
Asparagine or aspartic acid B Asx A placeholder when either amino acid may occupy a position.
Cysteine
 
C Cys The sulfur atom bonds readily to heavy metal ions. Under oxidizing conditions, two cysteines can join together in a disulfide bond to form the amino acid cystine. When cystines are part of a protein, insulin for example, the tertiary structure is stabilized, which makes the protein more resistant to denaturation; therefore, disulfide bonds are common in proteins that have to function in harsh environments including digestive enzymes (e.g., pepsin and chymotrypsin) and structural proteins (e.g., keratin). Disulfides are also found in peptides too small to hold a stable shape on their own (eg. insulin).
Aspartic acid
 
D Asp Behaves similarly to glutamic acid. Carries a hydrophilic acidic group with strong negative charge. Usually is located on the outer surface of the protein, making it water-soluble. Binds to positively-charged molecules and ions, often used in enzymes to fix the metal ion. When located inside of the protein, aspartate and glutamate are usually paired with arginine and lysine.
Glutamic acid
 
E Glu Behaves similar to aspartic acid. Has longer, slightly more flexible side chain.
Phenylalanine
 
F Phe Essential for humans. Phenylalanine, tyrosine, and tryptophan contain large rigid aromatic group on the side-chain. These are the biggest amino acids. Like isoleucine, leucine and valine, these are hydrophobic and tend to orient towards the interior of the folded protein molecule. Phenylalanine can be converted into Tyrosine.
Glycine
 
G Gly Because of the two hydrogen atoms at the α carbon, glycine is not optically active. It is the smallest amino acid, rotates easily, adds flexibility to the protein chain. It is able to fit into the tightest spaces, e.g., the triple helix of collagen. As too much flexibility is usually not desired, as a structural component it is less common than alanine.
Histidine
 
H His In even slightly acidic conditions protonation of the nitrogen occurs, changing the properties of histidine and the polypeptide as a whole. It is used by many proteins as a regulatory mechanism, changing the conformation and behavior of the polypeptide in acidic regions such as the late endosome or lysosome, enforcing conformation change in enzymes. However only a few histidines are needed for this, so it is comparatively scarce.
Isoleucine
 
I Ile Essential for humans. Isoleucine, leucine and valine have large aliphatic hydrophobic side chains. Their molecules are rigid, and their mutual hydrophobic interactions are important for the correct folding of proteins, as these chains tend to be located inside of the protein molecule.
Leucine or isoleucine J Xle A placeholder when either amino acid may occupy a position
Lysine
 
K Lys Essential for humans. Behaves similarly to arginine. Contains a long flexible side-chain with a positively-charged end. The flexibility of the chain makes lysine and arginine suitable for binding to molecules with many negative charges on their surfaces. E.g., DNA-binding proteins have their active regions rich with arginine and lysine. The strong charge makes these two amino acids prone to be located on the outer hydrophilic surfaces of the proteins; when they are found inside, they are usually paired with a corresponding negatively-charged amino acid, e.g., aspartate or glutamate.
Leucine
 
L Leu Essential for humans. Behaves similar to isoleucine and valine. See isoleucine.
Methionine
 
M Met Essential for humans. Always the first amino acid to be incorporated into a protein; sometimes removed after translation. Like cysteine, contains sulfur, but with a methyl group instead of hydrogen. This methyl group can be activated, and is used in many reactions where a new carbon atom is being added to another molecule.
Asparagine
 
N Asn Similar to aspartic acid. Asn contains an amide group where Asp has a carboxyl.
Pyrrolysine O Pyl Similar to lysine, with a pyrroline ring attached.
Proline
 
P Pro Contains an unusual ring to the N-end amine group, which forces the CO-NH amide sequence into a fixed conformation. Can disrupt protein folding structures like α helix or β sheet, forcing the desired kink in the protein chain. Common in collagen, where it often undergoes a posttranslational modification to hydroxyproline.
Glutamine
 
Q Gln Similar to glutamic acid. Gln contains an amide group where Glu has a carboxyl. Used in proteins and as a storage for ammonia. The most abundant Amino Acid in the body.
Arginine
 
R Arg Functionally similar to lysine.
Serine
 
S Ser Serine and threonine have a short group ended with a hydroxyl group. Its hydrogen is easy to remove, so serine and threonine often act as hydrogen donors in enzymes. Both are very hydrophilic, therefore the outer regions of soluble proteins tend to be rich with them.
Threonine
 
T Thr Essential for humans. Behaves similarly to serine.
Selenocysteine U Sec Selenated form of cysteine, which replaces sulfur.
Valine
 
V Val Essential for humans. Behaves similarly to isoleucine and leucine. See isoleucine.
Tryptophan
 
W Trp Essential for humans. Behaves similarly to phenylalanine and tyrosine (see phenylalanine). Precursor of serotonin. Naturally fluorescent.
Unknown X Xaa Placeholder when the amino acid is unknown or unimportant.
Tyrosine
 
Y Tyr Behaves similarly to phenylalanine (precursor to Tyrosine) and tryptophan (see phenylalanine). Precursor of melanin, epinephrine, and thyroid hormones. Naturally fluorescent, although fluorescence is usually quenched by energy transfer to tryptophans.
Glutamic acid or glutamine Z Glx A placeholder when either amino acid may occupy a position.

References

edit

http://en.wikipedia.org/w/index.php?title=Protein&oldid=425576197http://en.wikipedia.org/w/index.php?title=Proteinogenic_amino_acid&oldid=420804587http://en.wikipedia.org/w/index.php?title=Amino_acid&oldid=425389108http://en.wikipedia.org/w/index.php?title=Amino_acid&oldid=425389108 ↑ Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells.Nature Methods:4,261–7,2005 ↑ http://en.wikipedia.org/w/index.php?title=Peptide_bond&oldid=417601014 ↑ Basler B, Schuster O, Bach T (November 2005). "Conformationally constrained β-amino acid derivatives by intramolecular [2 + 2]-photocycloaddition of a tetronic acid amide and subsequent lactone ring opening". J. Org. Chem. 70 (24): 9798–808. doi:10.1021/jo0515226. PMID 16292808. ↑ Murray JK, Farooqi B, Sadowsky JD, et al. (September 2005). "Efficient synthesis of a β-peptide combinatorial library with microwave irradiation". J. Am. Chem. Soc. 127 (38): 13271–80. doi:10.1021/ja052733v. PMID 16173757. ↑ Seebach D, Matthews JL (1997). "β-Peptides: a surprise at every turn". Chem. Commun. (21): 2015–22. doi:10.1039/a704933a. ↑ http://en.wikipedia.org/w/index.php?title=Enzyme&oldid=424282616http://en.wikipedia.org/w/index.php?title=Enzyme&oldid=424282616 ↑ Moss, G.P.. "Recommendations of the Nomenclature Committee". International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse. Retrieved 2006-03-14. ↑ http://en.wikipedia.org/w/index.php?title=Enzyme&oldid=424282616 ↑ Lovell SC et al. (2003). "Structure validation by Cα geometry: φ,ψ and Cβ deviation". Proteins 50 (3): 437–450. doi:10.1002/prot.10286. ... ↑ Crowfoot Hodgkin D (1935). "X-ray Single Crystal Photographs of Insulin". Nature 135: 591. doi:10.1038/135591a0. ↑ Kendrew J. C. et al. (1958-03-08). "A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis". Nature 181 (4610): 662. doi:10.1038/181662a0. PMID 13517261. ↑ "Table of entries in the PDB, arranged by experimental method". ↑ "PDB Statistics". RCSB Protein Data Bank. Retrieved 2010-02-09. ↑ Scapin G (2006). "Structural biology and drug discovery". Curr. Pharm. Des. 12 (17): 2087. doi:10.2174/138161206777585201. PMID 16796557. ↑ Lundstrom K (2006). "Structural genomics for membrane proteins". Cell. Mol. Life Sci. 63 (22): 2597. doi:10.1007/s00018-006-6252-y. PMID 17013556. ↑ Lundstrom K (2004). "Structural genomics on membrane proteins: mini review". Comb. Chem. High Throughput Screen. 7 (5): 431. PMID 15320710.

See also

edit