Portal:Jupiter/Radiation astronomy/2
X-rays
editThe "image of Jupiter [at right] shows concentrations of auroral X-rays near the north and south magnetic poles."[1] The Chandra X-ray Observatory accumulated X-ray counts from Jupiter for its entire 10-hour rotation on December 18, 2000. Note that X-rays from the entire globe of Jupiter are detected.
In the second at right is a diagram describing interaction with the local magnetic field. Jupiter's strong, rapidly rotating magnetic field (light blue lines in the figure) generates strong electric fields in the space around the planet. Charged particles (white dots), "trapped in Jupiter's magnetic field, are continually being accelerated (gold particles) down into the atmosphere above the polar regions, so auroras are almost always active on Jupiter. Electric voltages of about 10 million volts, and currents of 10 million amps - a hundred times greater than the most powerful lightning bolts - are required to explain the auroras at Jupiter's poles, which are a thousand times more powerful than those on Earth. On Earth, auroras are triggered by solar storms of energetic particles, which disturb Earth's magnetic field. As shown by the swept-back appearance in the illustration, gusts of particles from the Sun also distort Jupiter's magnetic field, and on occasion produce auroras."[2]
References
edit- ↑ NASA/CXC/SWRI/G.R.Gladstone (27 February 2002). Jupiter Hot Spot Makes Trouble For Theory. Cambridge, Massachusetts: Harvard-Smithsonian Center for Astrophysics. http://chandra.harvard.edu/photo/2002/0001/. Retrieved 11 July 2012.
- ↑ X-ray: NASA/CXC/MSFC/R.ElsnerExpression error: Unrecognized word "etal". (2 March 2005). Jupiter: Chandra Probes High-Voltage Auroras on Jupiter. Cambridge, Massachusetts: Harvard-Smithsonian Center for Astrophysics. http://chandra.harvard.edu/photo/2005/jupiter/. Retrieved 11 July 2012.