Portal:Jupiter
Electrons
"Field-aligned equatorial electron beams [have been] observed within Jupiter’s middle magnetosphere. ... the Jupiter equatorial electron beams are spatially and/or temporally structured (down to <20 km at auroral altitudes, or less than several minutes), with regions of intense beams intermixed with regions absent of such beams."[1]
"Jovian electrons, both at Jupiter and in the interplanetary medium near Earth, have a very hard spectrum that varies as a power law with energy (see, e.g., Mewaldt et al. 1976). This spectral character is sufficiently distinct from the much softer solar and magnetospheric electron spectra that it has been used as a spectral filter to separate Jovian electrons from other sources ... A second Jovian electron characteristic is that such electrons in the interplanetary medium tend to consist of flux increases of several days duration which recur with 27 day periodicities ... A third feature of Jovian electrons at 1 AU is that the flux increases exhibit a long-term modulation of 13 months which is the synodic period of Jupiter as viewed from Earth".[2]
References
- ↑ Barry H. Mauk and Joachim Saur (October 26, 2007). "Equatorial electron beams and auroral structuring at Jupiter". Journal of Geophysical Research 112 (A10221): 20. doi:10.1029/2007JA012370. http://www.agu.org/journals/ja/ja0710/2007JA012370/figures.shtml. Retrieved 2012-06-02.
- ↑ C. T. Russell, D. N. Baker and J. A. Slavin (1 January 1988). Faith Vilas. ed. The Magnetosphere of Mercury, In: Mercury. Tucson, Arizona, United States of America: University of Arizona Press. pp. 514-61. ISBN 0816510857. Bibcode: 1988merc.book..514R. http://www-ssc.igpp.ucla.edu/personnel/russell/papers/magMercury.pdf. Retrieved 23 August 2012.
Poles

"The familiar banded appearance of Jupiter gradually gives way to a more mottled appearance closer to the north pole in this true color image [on the right] taken in 2000 by NASA's Cassini spacecraft."[1]
"The intricate structures seen in the polar region are clouds of different chemical composition, height and thickness. Clouds are organized by winds, and the mottled appearance in the polar regions suggests more vortex-type motion and winds of less vigor at higher latitudes."[1]
"One possible contributor is that the horizontal component of the Coriolis force, which arises from the planet's rotation and is responsible for curving the trajectories of ocean currents and winds on Earth, has its greatest effect at high latitudes and vanishes at the equator. This tends to create small, intense vortices at high latitudes on Jupiter. Another possibility may lie in that fact that Jupiter overall emits nearly as much of its own heat as it absorbs from the Sun, and this internal heat flux is very likely greater at the poles. This condition could lead to enhanced convection at the poles and more vortex-type structures."[1]
"The resolution here is 114 kilometers (71 miles) per pixel. This contrast-enhanced, edge-sharpened frame was composited from images take at different wavelengths with Cassini's narrow-angle camera, from a distance of 19 million kilometers (11.8 million miles). The spacecraft was in almost a direct line between the Sun and Jupiter, so the solar illumination on Jupiter is almost full phase."[1]
"These color maps [second down on the right] of Jupiter were constructed from images taken by the narrow-angle camera onboard NASA's Cassini spacecraft on Dec. 11 and 12, 2000, as the spacecraft neared Jupiter during its flyby of the giant planet. Cassini was on its way to Saturn. They are the most detailed global color maps of Jupiter ever produced. The smallest visible features are about 120 kilometers (75 miles) across."[2]
"The maps are composed of 36 images: a pair of images covering Jupiter's northern and southern hemispheres was acquired in two colors every hour for nine hours as Jupiter rotated beneath the spacecraft. Although the raw images are in just two colors, 750 nanometers (near-infrared) and 451 nanometers (blue), the map's colors are close to those the human eye would see when gazing at Jupiter."[2]
"The maps show a variety of colorful cloud features, including parallel reddish-brown and white bands, the Great Red Spot, multi-lobed chaotic regions, white ovals and many small vortices. Many clouds appear in streaks and waves due to continual stretching and folding by Jupiter's winds and turbulence. The bluish-gray features along the north edge of the central bright band are equatorial "hot spots," meteorological systems such as the one entered by NASA's Galileo probe. Small bright spots within the orange band north of the equator are lightning-bearing thunderstorms. The polar regions are less clearly visible because Cassini viewed them at an angle and through thicker atmospheric haze (such as the whitish material in the south polar map) [third down on the right]."[2]
"This image [on the left] shows Jupiter's south pole, as seen by NASA's Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). The oval features are cyclones, up to 600 miles (1,000 kilometers) in diameter. Multiple images taken with the JunoCam instrument on three separate orbits were combined to show all areas in daylight, enhanced color, and stereographic projection."[3]
References
- ↑ 1.0 1.1 1.2 1.3 Sue Lavoie (13 December 2000). PIA02856: High Latitude Mottling on Jupiter. Pasadena, California USA: NASA/JPL. http://photojournal.jpl.nasa.gov/catalog/PIA02856. Retrieved 2017-02-12.
- ↑ 2.0 2.1 2.2 Sue Lavoie (27 March 2006). PIA07783: Cassini's Best Maps of Jupiter (North Polar Map). NASA/JPL. http://photojournal.jpl.nasa.gov/catalog/PIA07783. Retrieved 2017-02-12.
- ↑ Betsy Asher Hall and Gervasio Robles (25 May 2017). PIA21641: Southern Storms. Pasadena, California USA: NASA/JPL. https://photojournal.jpl.nasa.gov/catalog/PIA21641. Retrieved 2017-07-10.
Aurora astronomy


The "image of Jupiter shows concentrations of auroral X-rays near the north and south magnetic poles."[1] The Chandra X-ray Observatory accumulated X-ray counts from Jupiter for its entire 10-hour rotation on December 18, 2000. Note that X-rays from the entire globe of Jupiter are detected.
Second is an ultraviolet image of aurora at Jupiter's north pole by the Hubble Space Telescope.
References
- ↑ NASA/CXC/SWRI/G.R.Gladstone (February 27, 2002). Jupiter Hot Spot Makes Trouble For Theory. Cambridge, Massachusetts: Harvard-Smithsonian Center for Astrophysics. http://chandra.harvard.edu/photo/2002/0001/. Retrieved 2012-07-11.
Marduk

~2800 b2k: The observation of Jupiter dates back to the Babylonian astronomers of the 7th or 8th century BC.[2] To the Babylonians, this object represented their god Marduk. They used the roughly 12-year orbit of this planet along the ecliptic to define the constellations of their zodiac.[3][4]
Marduk Sumerian: amar utu.k "calf of the sun; solar calf"; Greek Μαρδοχαῖος,[5]
"Marduk" is the Babylonian form of his name.[6]
The name Marduk was probably pronounced Marutuk.[7] The etymology of the name Marduk is conjectured as derived from amar-Utu ("bull calf of the sun god Utu").[6] The origin of Marduk's name may reflect an earlier genealogy, or have had cultural ties to the ancient city of Sippar (whose god was Utu, the sun god), dating back to the third millennium BC.[8]
By the Hammurabi period, Marduk had become astrologically associated with the planet Jupiter.[9]
Marduk's original character is obscure but he was later associated with water, vegetation, judgment, and magic.[10] His consort was the goddess Sarpanit.[11] He was also regarded as the son of Ea[12] (Sumerian Enki) and Damgalnuna (Damkina)[13] and the heir of Anu, but whatever special traits Marduk may have had were overshadowed by the political development through which the Euphrates valley passed and which led to people of the time imbuing him with traits belonging to gods who in an earlier period were recognized as the heads of the pantheon.[14]
Leonard W. King in The Seven Tablets of Creation (1902) included fragments of god lists which he considered essential for the reconstruction of the meaning of Marduk's name. Franz Bohl in his 1936 study of the fifty names also referred to King's list. Richard Litke (1958) noticed a similarity between Marduk's names in the An:Anum list and those of the Enuma elish, albeit in a different arrangement.
The connection between the An:Anum list and the list in Enuma Elish were established by Walther Sommerfeld (1982), who used the correspondence to argue for a Kassite period composition date of the Enuma elish, although the direct derivation of the Enuma elish list from the An:Anum one was disputed in a review by Wilfred Lambert (1984).[15]
Marduk prophesies that he will return once more to Babylon to a messianic new king, who will bring salvation to the city and who will wreak a terrible revenge on the Elamites. This king is understood to be Nebuchadnezzar I (Nabu-kudurri-uṣur I), 1125-1103 BC.[16]
References
- ↑ Willis, Roy (2012). World Mythology. New York: Metro Books. p. 62. ISBN 978-1-4351-4173-5.
- ↑ A. Sachs (May 2, 1974). "Babylonian Observational Astronomy". Philosophical Transactions of the Royal Society of London (Royal Society of London) 276 (1257): 43–50 (see p. 44). doi:10.1098/rsta.1974.0008.
- ↑ Eric Burgess (1982). By Jupiter: Odysseys to a Giant. New York: Columbia University Press. ISBN 0-231-05176-X.
- ↑ Rogers, J. H. (1998). "Origins of the ancient constellations: I. The Mesopotamian traditions". Journal of the British Astronomical Association, 108: 9–28.
- ↑ identified with Marduk by Heinrich Zimmeren (1862-1931), Stade's Zeitschrift 11, p. 161.
- ↑ 6.0 6.1 Helmer Ringgren, (1974) Religions of The Ancient Near East, Translated by John Sturdy, The Westminster Press, p. 66.
- ↑ Frymer-Kensky, Tikva (2005). Jones, Lindsay. ed. Marduk. Encyclopedia of religion. 8 (2 ed.). New York. pp. 5702–5703. ISBN 0-02-865741-1.
- ↑ The Encyclopedia of Religion - Macmillan Library Reference USA - Vol. 9 - Page 201
- ↑ Jastrow, Jr., Morris (1911). Aspects of Religious Belief and Practice in Babylonia and Assyria, G.P. Putnam's Sons: New York and London. pp. 217-219.
- ↑ [John L. McKenzie, Dictionary of the Bible, Simon & Schuster, 1965 p 541.]
- ↑ Helmer Ringgren, (1974) Religions of The Ancient Near East, Translated by John Sturdy, The Westminster Press, p. 67.
- ↑ Arendzen, John (1908). Cosmogony, In: The Catholic Encyclopedia. Robert Appleton Company. http://www.newadvent.org/cathen/04405c.htm. Retrieved 26 March 2011.
- ↑ C. Scott Littleton (2005). Gods, Goddesses and Mythology, Volume 6. Marshall Cavendish. p. 829.
- ↑ Morris Jastrow (1911). Aspects of Religious Belief and Practice in Babylonia and Assyria. G. P. Putnam’s Sons. p. 38.
- ↑ Andrea Seri, The Fifty Names of Marduk in Enuma elis, Journal of the American Oriental Society 126.4 (2006)
- ↑ Matthew Neujahr (2006). "Royal Ideology and Utopian Futures in the Akkadian Ex Eventu Prophecies". In Ehud Ben Zvi. Utopia and Dystopia in Prophetic Literature. Helsinki: The Finnish Exegetical Society, University of Helsinki. pp. 41–54.
External links

Jupiter appears in pastel colors in this photo because the observation was taken in near-infrared light. Credit: NASA, ESA, and E. Karkoschka (University of Arizona).
Blue astronomy

"The Juno spacecraft captured this image when the spacecraft was only 11,747 miles (18,906 kilometers) from the tops of Jupiter’s clouds — that’s roughly as far as the distance between New York City and Perth, Australia. The color-enhanced image, which captures a cloud system in Jupiter’s northern hemisphere, was taken on Oct. 24, 2017 at 10:24 a.m. PDT (1:24 p.m. EDT) when Juno was at a latitude of 57.57 degrees (nearly three-fifths of the way from Jupiter’s equator to its north pole) and performing its ninth close flyby of the gas giant planet."[1]
"The spatial scale in this image is 7.75 miles/pixel (12.5 kilometers/pixel)."[1]
"Because of the Juno-Jupiter-Sun angle when the spacecraft captured this image, the higher-altitude clouds can be seen casting shadows on their surroundings. The behavior is most easily observable in the whitest regions in the image, but also in a few isolated spots in both the bottom and right areas of the image."[1]
References
- ↑ 1.0 1.1 1.2 Gerald Eichstädt and Seán Doran (30 November 2017). Jupiter Blues. Washington, DC USA: NASA. https://www.nasa.gov/image-feature/jpl/pia21972/jupiter-blues. Retrieved 28 June 2018.
Europa

The image is a composite of two views of Europa. The left view shows the approximate natural color appearance of Europa. The view on the right is a false-color composite version combining violet, green and infrared images to enhance color differences in the predominantly water-ice crust of Europa. Dark brown areas represent rocky material derived from the interior, implanted by impact, or from a combination of interior and exterior sources. Bright plains in the polar areas (top and bottom) are shown in tones of blue to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named "Pwyll" for the Celtic god of the underworld. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter.
Astrognosy

The model for the interior of Jupiter suggests the occurrence of such materials as metallic hydrogen.