Gene transcriptions/SAREs

"Salicylic acid (SA) is an important signal in plant defence [4••] and a SA-response element (SARE) has been identified in the tobacco PR2-d gene. A 76bp fragment conferred a 20-fold induction by SA in transgenic tobacco plants and protein binding studies indicated that the core sequence of this SARE is TTCGACCTCC [40]."[1]

Synaptic Activity-Responsive Elements

edit
 
Dimeric structure of the MADS (red) and MEF2 (green) domains of the human MEF2B transcription factor complexed with DNA (orange) based on the PDB:1N6J crystallographic coordinates. Credit: Boghog2.
 
The domain organization and sequence comparison of Mef2 proteins from representative species.[2] The amino acid numbering shown is of the human MEF2A sequence and the per cent sequence identities are all relative to hMEF2A. The three domain, MADS (red), MEF2 (green), and transactivation domains (TAD; cyan) are each highlighted in a different color. Credit: Boghog2.

"A unique synaptic activity-responsive element (SARE) sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity."[3]

CREBs

edit

"The Ca2+/cAMP response element-binding protein (CREB) was initially identified as the main interlocutor in the dialogue between the synapse and the nucleus [1]."[3]

MEF2s

edit

"MEF2 [is a transcription factor] necessary for long-term memory consolidation and storage."[3]

Myocyte enhancer factor-2 (MEF2) proteins are a family of transcription factors which through control of gene expression are important regulators of cellular differentiation and consequently play a critical role in embryonic development.[2] In adult organisms, Mef2 proteins mediate the stress response in some tissues.[2]

SRFs

edit

The "serum response factor SRF [is a transcription factor] necessary for long-term memory consolidation and storage."[3]

The serum response factor (SRF) is a transcription factor protein that binds to the c-fos serum response element (SRE).[4]

The serum response factor is a member of the MADS-box (MCM1, Agamous, Deficiens, and SRF) box superfamily of transcription factors,[5] binding to the serum response element (SRE) in the promoter region of target genes. This protein regulates the activity of many immediate early genes, for example c-fos, and thereby participates in cell cycle regulation, apoptosis, cell growth, and cell differentiation, is the downstream target of many pathways; for example, the mitogen-activated protein kinase pathway (MAPK) that acts through the ternary complex factors (TCFs).[6][7]

SRF is important during the development of the embryo, as it has been linked to the formation of mesoderm.[8][9] In the fully developed mammal, SRF is crucial for the growth of skeletal muscle.[10] Interaction of SRF with other proteins, such as steroid hormone receptors, may contribute to regulation of muscle growth by steroids.[11]

Interactions

edit

Serum response factor has been shown to interact with:

See also

edit

References

edit
  1. Paul J Rushton and Imre E Somssich (August 1998). "Transcriptional control of plant genes responsive to pathogens". Current Opinion in Plant Biology 1 (4): 311-5. doi:10.1016/1369-5266(88)80052-9. http://arquivo.ufv.br/dbv/pgfvg/bve684/htms/pdfs_revisao/estresse/transcriptional.pdf. Retrieved 5 November 2018. 
  2. 2.0 2.1 2.2 "MEF2: a central regulator of diverse developmental programs". Development 134 (23): 4131–40. December 2007. doi:10.1242/dev.008367. PMID 17959722. 
  3. 3.0 3.1 3.2 3.3 Fernanda M. Rodríguez-Tornos, Iñigo San Aniceto, Beatriz Cubelos, Marta Nieto (31 January 2013). "Enrichment of Conserved Synaptic Activity-Responsive Element in Neuronal Genes Predicts a Coordinated Response of MEF2, CREB and SRF". PLoS ONE 8 (1): e53848. doi:10.1371/journal.pone.0053848. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0053848&type=printable. Retrieved 12 November 2018. 
  4. "Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element". Cell 55 (6): 989–1003. December 1988. doi:10.1016/0092-8674(88)90244-9. PMID 3203386. 
  5. "The MADS-box family of transcription factors". Eur. J. Biochem. 229 (1): 1–13. April 1995. doi:10.1111/j.1432-1033.1995.0001l.x. PMID 7744019. 
  6. "Isolation and characterization of SRF accessory proteins". Philos. Trans. R. Soc. Lond. B Biol. Sci. 340 (1293): 325–32. June 1993. doi:10.1098/rstb.1993.0074. PMID 8103935. 
  7. SRF serum response factor. National Center for Biotechnology Information, National Institutes of Health. https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6722. 
  8. "Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity". J. Biol. Chem. 277 (28): 25775–82. July 2002. doi:10.1074/jbc.M203122200. PMID 11983708. 
  9. "Serum response factor, an enriched cardiac mesoderm obligatory factor, is a downstream gene target for Tbx genes". J. Biol. Chem. 280 (12): 11816–28. March 2005. doi:10.1074/jbc.M412408200. PMID 15591049. 
  10. "Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice". Proc. Natl. Acad. Sci. U.S.A. 102 (4): 1082–7. January 2005. doi:10.1073/pnas.0409103102. PMID 15647354. PMC 545866. //www.ncbi.nlm.nih.gov/pmc/articles/PMC545866/. 
  11. "Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene". J. Biol. Chem. 280 (9): 7786–92. March 2005. doi:10.1074/jbc.M413992200. PMID 15623502. 
  12. "Novel transcription coactivator complex containing activating signal cointegrator 1". Mol. Cell. Biol. 22 (14): 5203–11. July 2002. doi:10.1128/mcb.22.14.5203-5211.2002. PMID 12077347. PMC 139772. //www.ncbi.nlm.nih.gov/pmc/articles/PMC139772/. 
  13. 13.0 13.1 "Interaction of ATF6 and serum response factor". Mol. Cell. Biol. 17 (9): 4957–66. September 1997. PMID 9271374. PMC 232347. //www.ncbi.nlm.nih.gov/pmc/articles/PMC232347/. 
  14. "Ras regulates the association of serum response factor and CCAAT/enhancer-binding protein beta". J. Biol. Chem. 274 (20): 14224–8. May 1999. doi:10.1074/jbc.274.20.14224. PMID 10318842. 
  15. "Regulation of the cfos serum response element by C/EBPbeta". Mol. Cell. Biol. 17 (3): 1744–55. March 1997. doi:10.1128/mcb.17.3.1744. PMID 9032301. PMC 231899. //www.ncbi.nlm.nih.gov/pmc/articles/PMC231899/. 
  16. 16.0 16.1 "PML-nuclear bodies are involved in cellular serum response". Genes Cells 8 (3): 275–86. March 2003. doi:10.1046/j.1365-2443.2003.00632.x. PMID 12622724. 
  17. "The B-box dominates SAP-1-SRF interactions in the structure of the ternary complex". EMBO J. 20 (12): 3018–28. June 2001. doi:10.1093/emboj/20.12.3018. PMID 11406578. PMC 150215. //www.ncbi.nlm.nih.gov/pmc/articles/PMC150215/. 
  18. "Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators". Mol. Cell. Biol. 20 (20): 7550–8. October 2000. doi:10.1128/mcb.20.20.7550-7558.2000. PMID 11003651. PMC 86307. //www.ncbi.nlm.nih.gov/pmc/articles/PMC86307/. 
  19. "Serum response factor-GATA ternary complex required for nuclear signaling by a G-protein-coupled receptor". Mol. Cell. Biol. 21 (4): 1036–44. February 2001. doi:10.1128/MCB.21.4.1036-1044.2001. PMID 11158291. PMC 99558. //www.ncbi.nlm.nih.gov/pmc/articles/PMC99558/. 
  20. "Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor". Nature 373 (6515): 632–5. February 1995. doi:10.1038/373632a0. PMID 7854423. 
  21. "Role of transcription factor TFIIF in serum response factor-activated transcription". J. Biol. Chem. 269 (5): 3489–97. February 1994. PMID 8106390. 
  22. "A multifunctional DNA-binding protein that promotes the formation of serum response factor/homeodomain complexes: identity to TFII-I". Genes Dev. 11 (19): 2482–93. October 1997. doi:10.1101/gad.11.19.2482. PMID 9334314. PMC 316568. //www.ncbi.nlm.nih.gov/pmc/articles/PMC316568/. 
  23. "TFII-I enhances activation of the c-fos promoter through interactions with upstream elements". Mol. Cell. Biol. 18 (6): 3310–20. June 1998. doi:10.1128/mcb.18.6.3310. PMID 9584171. PMC 108912. //www.ncbi.nlm.nih.gov/pmc/articles/PMC108912/. 
  24. "Physical interaction between the mitogen-responsive serum response factor and myogenic basic-helix-loop-helix proteins". J. Biol. Chem. 271 (9): 5258–64. March 1996. doi:10.1074/jbc.271.9.5258. PMID 8617811. 
  25. "Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter". Mol. Cell. Biol. 19 (4): 2577–84. April 1999. PMID 10082523. PMC 84050. //www.ncbi.nlm.nih.gov/pmc/articles/PMC84050/. 
  26. "Identification of proteins that interact with NF-YA". FEBS Lett. 460 (1): 41–5. October 1999. doi:10.1016/s0014-5793(99)01311-3. PMID 10571058. 
  27. "Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor". J. Biol. Chem. 275 (17): 12470–4. April 2000. doi:10.1074/jbc.275.17.12470. PMID 10777532. 
  28. "Steroid receptor coactivator-1 interacts with serum response factor and coactivates serum response element-mediated transactivations". J. Biol. Chem. 273 (44): 28564–7. October 1998. doi:10.1074/jbc.273.44.28564. PMID 9786846. 
  29. "Physical interaction between the MADS box of serum response factor and the TEA/ATTS DNA-binding domain of transcription enhancer factor-1". J. Biol. Chem. 276 (13): 10413–22. March 2001. doi:10.1074/jbc.M008625200. PMID 11136726. 
edit