This page includes the vector spaces used in the course.
Defining: vector space
edit
End-dimensional vector spaces 1
edit
''(Distinction between operations -
K
{\textstyle \mathbb {K} }
-Algebra) What are the characteristics of a
K
{\textstyle \mathbb {K} }
-vector space and a
K
{\textstyle \mathbb {K} }
-Algebra? Distinguish between three types of multiplication in a
K
{\textstyle \mathbb {K} }
-Algebra and identify in the defining properties of the
K
{\textstyle \mathbb {K} }
vector spaces or the
K
{\textstyle \mathbb {K} }
algebra according to these types of multiplication.
Multiplication in field
K
{\textstyle \mathbb {K} }
,
scalar multiplication as a binary function from
K
×
V
{\textstyle \mathbb {K} \times V}
to
V
{\textstyle V}
,
Multiplication of elements from vector space as an inner link in a
K
{\textstyle \mathbb {K} }
algebra,
'(Multiplications - Hilbert space) Be
K
:=
R
{\textstyle \mathbb {K} :=\mathbb {R} }
or
K
:=
C
{\textstyle \mathbb {K} :=\mathbb {C} }
. By which properties are different a
K
{\textstyle \mathbb {K} }
-vector space and a Hilbert space over the field
K
{\textstyle \mathbb {K} }
? Distinguish three operations in a
K
{\textstyle \mathbb {K} }
-Hilbert space and compare the defining properties of a multiplication as an inner link in a
K
{\textstyle \mathbb {K} }
-Algebra with the properties of a scalar product in an Hilbert space above the field
K
{\textstyle \mathbb {K} }
. What similarities and differences do you notice?
Finite dimensional vector spaces 2
edit
Be
m
,
n
∈
N
{\textstyle m,n\in \mathbb {N} }
, then is
M
a
t
(
m
×
n
,
Q
)
{\textstyle Mat(m\times n,\mathbb {Q} )}
(
m
×
n
{\textstyle m\times n}
matrices with components in
Q
{\textstyle \mathbb {Q} }
) a finite dimensional
Q
{\textstyle \mathbb {Q} }
-vector space of the dimension
m
⋅
n
{\textstyle m\cdot n}
,
M
a
t
(
m
×
n
,
R
)
{\textstyle Mat(m\times n,\mathbb {R} )}
(
m
×
n
{\textstyle m\times n}
matrices with components in
R
{\textstyle \mathbb {R} }
) a finite dimensional
R
{\textstyle \mathbb {R} }
-vector space of the dimension
m
⋅
n
{\textstyle m\cdot n}
,
M
a
t
(
m
×
n
,
C
)
{\textstyle Mat(m\times n,\mathbb {C} )}
(
m
×
n
{\textstyle m\times n}
matrices with components in
C
{\textstyle \mathbb {C} }
) a finite dimensional
C
{\textstyle \mathbb {C} }
-vector space of the dimension
m
⋅
n
{\textstyle m\cdot n}
,
Infinite-dimensional vector spaces of functions 1
edit
Be
C
(
[
a
,
b
]
,
K
)
{\textstyle {\mathcal {C}}([a,b],\mathbb {K} )}
the set of constant (engl. continuous) functions of the interval
[
a
.
b
]
{\textstyle [a.b]}
in the field
K
=
Q
,
R
,
C
{\textstyle \mathbb {K} =\mathbb {Q} ,\mathbb {R} ,\mathbb {C} }
as a range of values. Then
C
(
[
a
,
b
]
,
Q
)
{\textstyle {\mathcal {C}}([a,b],\mathbb {Q} )}
an infinite dimensional
Q
{\textstyle \mathbb {Q} }
-vector space,
C
(
[
a
,
b
]
,
R
)
{\textstyle {\mathcal {C}}([a,b],\mathbb {R} )}
an infinite dimensional
R
{\textstyle \mathbb {R} }
-vector space,
C
(
[
a
,
b
]
,
C
)
{\textstyle {\mathcal {C}}([a,b],\mathbb {C} )}
an infinite dimensional
C
{\textstyle \mathbb {C} }
-vector space.
Internal and external link to vector spaces of functions 2
edit
The internal link is defined as follows:
+
:
V
×
V
→
V
{\displaystyle +:V\times V\to V}
with
(
f
,
g
)
↦
f
+
g
:=
h
{\textstyle (f,g)\mapsto f+g:=h}
and
h
(
x
)
:=
f
(
x
)
+
g
(
x
)
{\textstyle h(x):=f(x)+g(x)}
for all
x
∈
[
a
,
b
]
{\textstyle x\in [a,b]}
.
The external feature is likewise defined by the multiplication of the function values with the scalar for each
x
∈
[
a
,
b
]
{\textstyle x\in [a,b]}
rt:
⋅
:
K
×
V
→
V
{\displaystyle \cdot :\mathbb {K} \times V\to V}
with
(
λ
,
f
)
↦
λ
⋅
f
:=
h
{\textstyle (\lambda ,f)\mapsto \lambda \cdot f:=h}
and
h
(
x
)
:=
λ
⋅
f
(
x
)
{\textstyle h(x):=\lambda \cdot f(x)}
for all
x
∈
[
a
,
b
]
{\textstyle x\in [a,b]}
.
Vector Space of Continuous Functions
edit
The compactness of the definition range
[
a
,
b
]
{\textstyle [a,b]}
makes the space
C
(
[
a
,
b
]
,
R
)
{\textstyle {\mathcal {C}}([a,b],\mathbb {R} )}
of the steady functions of
[
a
,
b
]
{\textstyle [a,b]}
according to
R
{\textstyle \mathbb {R} }
with the standard
‖
f
‖
:=
∫
a
b
|
f
(
x
)
|
d
x
{\displaystyle \|f\|:=\displaystyle \int _{a}^{b}|f(x)|\,dx}
to a standardized vector space (see also norms, metrics, topology ). With the semi-standards
‖
f
‖
n
:=
∫
−
n
+
n
|
f
(
x
)
|
d
x
{\displaystyle \|f\|_{n}:=\displaystyle \int _{-n}^{+n}|f(x)|\,dx}
becomes
(
C
(
R
,
R
)
,
‖
⋅
‖
N
{\textstyle ({\mathcal {C}}(\mathbb {R} ,\mathbb {R} ),\|\cdot \|_{\mathbb {N} }}
a local convex topological vector space.
Infinite-dimensional vector spaces of sequences 3
edit
Be
K
=
Q
,
R
,
C
)
{\textstyle \mathbb {K} =\mathbb {Q} ,\mathbb {R} ,\mathbb {C} )}
a field, then designated
K
N
:=
{
(
a
n
)
n
∈
N
|
a
n
∈
K
für alle
n
∈
N
}
{\textstyle \mathbb {K} ^{\mathbb {N} }:=\{(a_{n})_{n\in \mathbb {N} }\,|\,a_{n}\in \mathbb {K} \,{\mbox{ für alle }}n\in \mathbb {N} \}}
the following sequences are set in
K
{\textstyle \mathbb {K} }
.
c
o
o
(
K
)
:=
{
(
a
n
)
n
∈
N
∈
K
N
|
∃
n
0
∈
N
∀
n
≥
n
0
:
a
n
=
0
}
{\textstyle c_{oo}(\mathbb {K} ):=\{(a_{n})_{n\in \mathbb {N} }\in \mathbb {K} ^{\mathbb {N} }\,|\,\exists _{n_{0}\in \mathbb {N} }\forall _{n\geq n_{0}}\,:\,a_{n}=0\}}
, the sequences set in
K
{\textstyle \mathbb {K} }
, which are all components of sequence 0 from an index barrier.
c
o
(
K
)
:=
{
(
a
n
)
n
∈
N
∈
K
N
|
lim
n
→
∞
a
n
=
0
}
{\textstyle c_{o}(\mathbb {K} ):=\{(a_{n})_{n\in \mathbb {N} }\in \mathbb {K} ^{\mathbb {N} }\,|\,\lim _{n\to \infty }a_{n}=0\}}
set convergent sequences to 0
c
(
K
)
:=
{
(
a
n
)
n
∈
N
∈
K
N
|
∃
a
o
∈
K
:
lim
n
→
∞
a
n
=
a
o
}
{\textstyle c(\mathbb {K} ):=\{(a_{n})_{n\in \mathbb {N} }\in \mathbb {K} ^{\mathbb {N} }\,|\,\exists _{a_{o}\in \mathbb {K} }\,:\,\lim _{n\to \infty }a_{n}=a_{o}\}}
, the set of convergent consequences in
K
{\textstyle \mathbb {K} }
.
Infinite-dimensional vector spaces of sequences 4
edit
Let
K
=
Q
,
R
,
C
{\displaystyle \mathbb {K} =\mathbb {Q} ,\mathbb {R} ,\mathbb {C} }
be a field, then we define the following vector spaces:
ℓ
1
(
K
)
:=
{
(
a
n
)
n
∈
N
∈
K
N
|
∑
n
=
1
∞
|
a
n
|
<
∞
}
{\displaystyle \ell _{1}(\mathbb {K} ):=\{(a_{n})_{n\in \mathbb {N} }\in \mathbb {K} ^{\mathbb {N} }\,|\,\sum _{n=1}^{\infty }|a_{n}|<\infty \}}
, the set of all sequences in
K
{\displaystyle \mathbb {K} }
, that are absolute convergent
ℓ
1
(
K
)
{\displaystyle \ell _{1}(\mathbb {K} )}
iss a normed vector space with the norm
‖
a
‖
:=
∑
n
=
1
∞
|
a
n
|
{\displaystyle \|a\|:=\sum _{n=1}^{\infty }|a_{n}|}
).
ℓ
p
(
K
)
:=
{
(
a
n
)
n
∈
N
∈
K
N
|
∑
n
=
1
∞
|
a
n
|
p
<
∞
}
{\displaystyle \ell _{p}(\mathbb {K} ):=\{(a_{n})_{n\in \mathbb {N} }\in \mathbb {K} ^{\mathbb {N} }\,|\,\sum _{n=1}^{\infty }|a_{n}|^{p}<\infty \}}
is the space all sequences in
K
{\displaystyle \mathbb {K} }
, that absolute p -summable. For
1
≤
p
<
∞
{\displaystyle 1\leq p<\infty }
the space is a normed space. For
0
<
p
<
1
{\displaystyle 0<p<1}
the space is a metric space with the metric
d
p
(
(
a
n
)
n
,
(
b
n
)
n
)
:=
∑
n
=
1
∞
|
a
n
−
b
n
|
p
{\displaystyle d_{p}((a_{n})_{n},(b_{n})_{n}):=\sum _{n=1}^{\infty }|a_{n}-b_{n}|^{p}}
, the topology can also be created with a
p
{\displaystyle p}
-norm
‖
(
a
n
)
n
‖
p
:=
∑
n
=
1
∞
|
a
n
|
p
{\displaystyle \|(a_{n})_{n}\|_{p}:=\sum _{n=1}^{\infty }|a_{n}|^{p}}
ℓ
∞
(
K
)
:=
{
(
a
n
)
n
∈
N
∈
K
N
|
∃
C
>
0
:
sup
n
∈
N
|
a
n
|
<
C
}
{\displaystyle \ell _{\infty }(\mathbb {K} ):=\{(a_{n})_{n\in \mathbb {N} }\in \mathbb {K} ^{\mathbb {N} }\,|\,\exists _{C>0}\,:\,\sup _{n\in \mathbb {N} }|a_{n}|<C\}}
is the set of all bounded sequences in
K
{\displaystyle \mathbb {K} }
.
ℓ
∞
(
K
)
{\displaystyle \ell _{\infty }(\mathbb {K} )}
is a normed space.
Infinite-dimensional vector spaces of sequence 5
edit
Let
K
=
Q
,
R
,
C
{\displaystyle \mathbb {K} =\mathbb {Q} ,\mathbb {R} ,\mathbb {C} }
a field and
(
p
n
)
n
∈
N
{\displaystyle (p_{n})_{n\in \mathbb {N} }}
a monotonic non-increasing sequence with
0
<
p
n
≤
1
{\displaystyle 0<p_{n}\leq 1}
for all
n
∈
N
{\displaystyle n\in \mathbb {N} }
, the we denote
ℓ
(
K
,
(
p
n
)
n
∈
N
)
:=
{
(
a
k
)
k
∈
N
∈
K
N
|
∑
k
=
1
∞
|
a
k
|
p
k
<
∞
}
{\displaystyle \ell (\mathbb {K} ,(p_{n})_{n\in \mathbb {N} }):=\{(a_{k})_{k\in \mathbb {N} }\in \mathbb {K} ^{\mathbb {N} }\,|\,\sum _{k=1}^{\infty }|a_{k}|^{p_{k}}<\infty \}}
as the set of all sequences in
K
{\displaystyle \mathbb {K} }
for which the sequence
(
|
a
k
|
p
k
)
k
∈
N
{\displaystyle \left(|a_{k}|^{p_{k}}\right)_{k\in \mathbb {N} }}
is absolute convergent.
For the space
ℓ
(
K
,
(
p
n
)
n
∈
N
)
{\displaystyle \ell (\mathbb {K} ,(p_{n})_{n\in \mathbb {N} })}
we define with the following
p
{\displaystyle p}
-seminorms
‖
a
‖
n
=
∑
k
=
1
∞
|
a
k
|
p
n
{\displaystyle \|a\|_{n}=\sum _{k=1}^{\infty }|a_{k}|^{p_{n}}}
for sequences
a
=
(
a
k
)
k
∈
N
.
{\displaystyle a=(a_{k})_{k\in \mathbb {N} .}}
ℓ
(
K
,
(
p
n
)
n
∈
N
)
{\displaystyle \ell (\mathbb {K} ,(p_{n})_{n\in \mathbb {N} })}
is a pseudoconvex vector space with the
p
{\displaystyle p}
-seminorm system
‖
⋅
‖
N
{\displaystyle \|\cdot \|_{\mathbb {N} }}
Please note, that for all
p
{\displaystyle p}
-seminorms the index
n
{\displaystyle n}
for the the exponent
p
n
{\displaystyle p_{n}}
is fixed for every index
k
∈
N
{\displaystyle k\in \mathbb {N} }
of the sequence.
Impact spaces in normed vector space
edit
space of polynomial vector
edit
Be
⋅
:
K
×
V
→
V
{\textstyle \cdot :\mathbb {K} \times V\rightarrow V}
6 a body and
⋅
:
K
×
V
→
V
{\textstyle \cdot :\mathbb {K} \times V\rightarrow V}
7 a normed
⋅
:
K
×
V
→
V
{\textstyle \cdot :\mathbb {K} \times V\rightarrow V}
8-vector space, then designated
V
[
x
]
:=
{
p
|
(
p
n
)
n
∈
N
∈
c
o
o
(
V
)
∧
p
(
x
)
:=
∑
n
=
0
∞
p
n
⋅
x
n
}
{\displaystyle V[x]:=\left\{p\,\left|\,(p_{n})_{n\in \mathbb {N} }\in c_{oo}(V)\wedge p(x):=\sum _{n=0}^{\infty }p_{n}\cdot x^{n}\right.\right\}}
sets of polynomials with coefficients in
⋅
:
K
×
V
→
V
{\textstyle \cdot :\mathbb {K} \times V\rightarrow V}
9.
For a special
(
λ
,
v
)
↦
λ
⋅
v
{\textstyle (\lambda ,v)\mapsto \lambda \cdot v}
0,
(
λ
,
v
)
↦
λ
⋅
v
{\textstyle (\lambda ,v)\mapsto \lambda \cdot v}
1 is a linear combination of vectors of
(
λ
,
v
)
↦
λ
⋅
v
{\textstyle (\lambda ,v)\mapsto \lambda \cdot v}
2, wherein the coeffcients of the scalar multiplication potencies are
(
λ
,
v
)
↦
λ
⋅
v
{\textstyle (\lambda ,v)\mapsto \lambda \cdot v}
3 of a scaler 698-1047-172940832.
Binary operations and functions on vector spaces of sequences 4
edit
The binary operations and functions on vector spaces of sequences are defined component-wise, analog to addition and scalar multiplication on the vector spacee
Q
n
{\displaystyle \mathbb {Q} ^{n}}
,
R
n
{\displaystyle \mathbb {R} ^{n}}
oder
C
n
{\displaystyle \mathbb {C} ^{n}}
.
With
V
=
K
N
{\displaystyle V=\mathbb {K} ^{\mathbb {N} }}
and
K
=
Q
,
R
,
C
)
{\displaystyle \mathbb {K} =\mathbb {Q} ,\mathbb {R} ,\mathbb {C} )}
the binary operation is defined with
a
:=
(
a
n
)
n
∈
N
{\displaystyle a:=(a_{n})_{n\in \mathbb {N} }}
,
b
:=
(
b
n
)
n
∈
N
{\displaystyle b:=(b_{n})_{n\in \mathbb {N} }}
and
c
:=
(
c
n
)
n
∈
N
{\displaystyle c:=(c_{n})_{n\in \mathbb {N} }}
in the following way:
+
:
V
×
V
→
V
{\displaystyle +:V\times V\to V}
mit
(
a
,
b
)
↦
a
+
b
:=
c
{\displaystyle (a,b)\mapsto a+b:=c}
und
c
n
:=
a
n
+
b
n
{\displaystyle c_{n}:=a_{n}+b_{n}}
für alle
n
∈
N
{\displaystyle n\in \mathbb {N} }
.
The binary function of scalar multiplication is defined by the multiplication of the components of the sequence with the scalar
λ
∈
K
{\displaystyle \lambda \in \mathbb {K} }
:
⋅
:
K
×
V
→
V
{\displaystyle \cdot :\mathbb {K} \times V\to V}
mit
(
λ
,
a
)
↦
λ
⋅
a
:=
c
{\displaystyle (\lambda ,a)\mapsto \lambda \cdot a:=c}
and
c
n
:=
λ
⋅
a
n
{\displaystyle c_{n}:=\lambda \cdot a_{n}}
for all
n
∈
N
{\displaystyle n\in \mathbb {N} }
.
Consider the set of real numbers
R
{\displaystyle \mathbb {R} }
as a Vector space over the field
Q
{\displaystyle \mathbb {Q} }
. Is
(
R
,
+
,
⋅
,
Q
)
{\displaystyle (\mathbb {R} ,+,\cdot ,\mathbb {Q} )}
a finite dimensional or an infinite dimensional Vector space over the field
Q
{\displaystyle \mathbb {Q} }
? Explain your answer!
Prove, that the vector
v
1
=
3
{\displaystyle v_{1}=3}
and
v
2
=
3
{\displaystyle v_{2}={\sqrt {3}}}
span a linear subspace
U
1
{\displaystyle U_{1}}
in the
Q
{\displaystyle \mathbb {Q} }
-vector space
(
R
,
+
,
⋅
,
Q
)
{\displaystyle (\mathbb {R} ,+,\cdot ,\mathbb {Q} )}
has as intersection
U
1
∩
U
2
{\displaystyle U_{1}\cap U_{2}}
with
U
2
:=
5
Q
{\displaystyle U_{2}:={\sqrt {5}}\mathbb {Q} }
and the intersection contains just
0
∈
R
{\displaystyle 0\in \mathbb {R} }
!
Analyse the subset property of the following vector space of sequences and consider property of convergence of series, which are generated by the sequences with:
ℓ
p
(
K
)
:=
{
(
x
n
)
n
∈
K
N
:
∑
n
=
1
∞
|
x
n
|
p
<
∞
}
{\displaystyle \quad \ell ^{p}(\mathbb {K} ):=\left\{(x_{n})_{n}\in \mathbb {K} ^{\mathbb {N} }\,:\,\sum _{n=1}^{\infty }|x_{n}|^{p}<\infty \right\}}
.
Identify the subset property between
ℓ
1
(
K
)
{\displaystyle \ell ^{1}(\mathbb {K} )}
and
c
o
(
K
)
{\displaystyle c_{o}(\mathbb {K} )}
? Generalize this approach on
ℓ
1
(
V
)
{\displaystyle \ell ^{1}(V)}
and
c
o
(
V
)
{\displaystyle c_{o}(V)}
for normed spaces
(
V
,
‖
⋅
‖
)
{\displaystyle (V,\|\cdot \|)}
! Is this true for metric spaces
(
V
,
d
)
{\displaystyle (V,d)}
?