Reynolds transport theorem
edit
|
Proof:
Let
be reference configuration of the region
. Let
the motion and the deformation gradient be given by

Let
.
Then, integrals in the current and the reference configurations are
related by
![{\displaystyle \int _{\Omega (t)}\mathbf {f} (\mathbf {x} ,t)~{\text{dV}}=\int _{\Omega _{0}}\mathbf {f} [{\boldsymbol {\varphi }}(\mathbf {X} ,t),t]~J(\mathbf {X} ,t)~{\text{dV}}_{0}=\int _{\Omega _{0}}{\hat {\mathbf {f} }}(\mathbf {X} ,t)~J(\mathbf {X} ,t)~{\text{dV}}_{0}~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4a49b5532c9a31af8181b530f93ce95d8880ab0d)
The time derivative of an integral over a volume is defined as

Converting into integrals over the reference configuration, we get

Since
is independent of time, we have
![{\displaystyle {\begin{aligned}{\cfrac {d}{dt}}\left(\int _{\Omega (t)}\mathbf {f} (\mathbf {x} ,t)~{\text{dV}}\right)&=\int _{\Omega _{0}}\left[\lim _{\Delta t\rightarrow 0}{\cfrac {{\hat {\mathbf {f} }}(\mathbf {X} ,t+\Delta t)~J(\mathbf {X} ,t+\Delta t)-{\hat {\mathbf {f} }}(\mathbf {X} ,t)~J(\mathbf {X} ,t)}{\Delta t}}\right]~{\text{dV}}_{0}\\&=\int _{\Omega _{0}}{\frac {\partial }{\partial t}}[{\hat {\mathbf {f} }}(\mathbf {X} ,t)~J(\mathbf {X} ,t)]~{\text{dV}}_{0}\\&=\int _{\Omega _{0}}\left({\frac {\partial }{\partial t}}[{\hat {\mathbf {f} }}(\mathbf {X} ,t)]~J(\mathbf {X} ,t)+{\hat {\mathbf {f} }}(\mathbf {X} ,t)~{\frac {\partial }{\partial t}}[J(\mathbf {X} ,t)]\right)~{\text{dV}}_{0}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e6bc22c2caea1738fd010bd66624188d03c7c3b)
Now, the time derivative of
is given by
(see Gurtin: 1981, p. 77)

Therefore,
![{\displaystyle {\begin{aligned}{\cfrac {d}{dt}}\left(\int _{\Omega (t)}\mathbf {f} (\mathbf {x} ,t)~{\text{dV}}\right)&=\int _{\Omega _{0}}\left({\frac {\partial }{\partial t}}[{\hat {\mathbf {f} }}(\mathbf {X} ,t)]~J(\mathbf {X} ,t)+{\hat {\mathbf {f} }}(\mathbf {X} ,t)~J(\mathbf {X} ,t)~{\boldsymbol {\nabla }}\cdot \mathbf {v} (\mathbf {x} ,t)\right)~{\text{dV}}_{0}\\&=\int _{\Omega _{0}}\left({\frac {\partial }{\partial t}}[{\hat {\mathbf {f} }}(\mathbf {X} ,t)]+{\hat {\mathbf {f} }}(\mathbf {X} ,t)~{\boldsymbol {\nabla }}\cdot \mathbf {v} (\mathbf {x} ,t)\right)~J(\mathbf {X} ,t)~{\text{dV}}_{0}\\&=\int _{\Omega (t)}\left({\dot {\mathbf {f} }}(\mathbf {x} ,t)+\mathbf {f} (\mathbf {x} ,t)~{\boldsymbol {\nabla }}\cdot \mathbf {v} (\mathbf {x} ,t)\right)~{\text{dV}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d84e6b053ff103823871017d8ecfef2700c97ae6)
where
is the material time derivative of
. Now,
the material derivative is given by
![{\displaystyle {\dot {\mathbf {f} }}(\mathbf {x} ,t)={\frac {\partial \mathbf {f} (\mathbf {x} ,t)}{\partial t}}+[{\boldsymbol {\nabla }}\mathbf {f} (\mathbf {x} ,t)]\cdot \mathbf {v} (\mathbf {x} ,t)~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0527b00dc98359f37547adb6ed77d26e9b65d5de)
Therefore,
![{\displaystyle {\cfrac {d}{dt}}\left(\int _{\Omega (t)}\mathbf {f} (\mathbf {x} ,t)~{\text{dV}}\right)=\int _{\Omega (t)}\left({\frac {\partial \mathbf {f} (\mathbf {x} ,t)}{\partial t}}+[{\boldsymbol {\nabla }}\mathbf {f} (\mathbf {x} ,t)]\cdot \mathbf {v} (\mathbf {x} ,t)+\mathbf {f} (\mathbf {x} ,t)~{\boldsymbol {\nabla }}\cdot \mathbf {v} (\mathbf {x} ,t)\right)~{\text{dV}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59d94c20b05aaa00649e1b2a73cdfdbb7f5eedff)
or,

Using the identity

we then have

Using the divergence theorem and the identity
we have

References
- M.E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, New York, 1981.
- T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons, Ltd., New York, 2000.