The integral

is a function of the parameter . Show that the derivative of is given by
![{\displaystyle {\cfrac {dF}{dt}}={\cfrac {d}{dt}}\left(\int _{a(t)}^{b(t)}f(x,t)~{\text{dx}}\right)=\int _{a(t)}^{b(t)}{\frac {\partial f(x,t)}{\partial t}}~{\text{dx}}+f[b(t),t]~{\frac {\partial b(t)}{\partial t}}-f[a(t),t]~{\frac {\partial a(t)}{\partial t}}~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/75b464cf7adf9651e950690b9edb76c25651efcc)
This relation is also known as the Leibniz rule.
|
Proof:
We have,

Now,
![{\displaystyle {\begin{aligned}{\cfrac {F(t+\Delta t)-F(t)}{\Delta t}}&={\cfrac {1}{\Delta t}}\left[\int _{a(t+\Delta t)}^{b(t+\Delta t)}f(x,t+\Delta t)~{\text{dx}}-\int _{a(t)}^{b(t)}f(x,t)~{\text{dx}}\right]\\&\equiv {\cfrac {1}{\Delta t}}\left[\int _{a+\Delta a}^{b+\Delta b}f(x,t+\Delta t)~{\text{dx}}-\int _{a}^{b}f(x,t)~{\text{dx}}\right]\\&={\cfrac {1}{\Delta t}}\left[-\int _{a}^{a+\Delta a}f(x,t+\Delta t)~{\text{dx}}+\int _{a}^{b+\Delta b}f(x,t+\Delta t)~{\text{dx}}-\int _{a}^{b}f(x,t)~{\text{dx}}\right]\\&={\cfrac {1}{\Delta t}}\left[-\int _{a}^{a+\Delta a}f(x,t+\Delta t)~{\text{dx}}+\int _{a}^{b}f(x,t+\Delta t)~{\text{dx}}+\int _{b}^{b+\Delta b}f(x,t+\Delta t)~{\text{dx}}-\int _{a}^{b}f(x,t)~{\text{dx}}\right]\\&=\int _{a}^{b}{\cfrac {f(x,t+\Delta t)-f(x,t)}{\Delta t}}~{\text{dx}}+{\cfrac {1}{\Delta t}}\int _{b}^{b+\Delta b}f(x,t+\Delta t)~{\text{dx}}-{\cfrac {1}{\Delta t}}\int _{a}^{a+\Delta a}f(x,t+\Delta t)~{\text{dx}}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4c8eec2b3ff0b0d2c8525d9fd932204993ba290d)
Since
is essentially constant over the infinitesimal
intervals
and
, we may write

Taking the limit as
, we get
![{\displaystyle \lim _{\Delta t\rightarrow 0}\left[{\cfrac {F(t+\Delta t)-F(t)}{\Delta t}}\right]=\lim _{\Delta t\rightarrow 0}\left[\int _{a}^{b}{\cfrac {f(x,t+\Delta t)-f(x,t)}{\Delta t}}~{\text{dx}}\right]+\lim _{\Delta t\rightarrow 0}\left[f(b,t+\Delta t)~{\cfrac {\Delta b}{\Delta t}}\right]-\lim _{\Delta t\rightarrow 0}\left[f(a,t+\Delta t)~{\cfrac {\Delta a}{\Delta t}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5367ce899f7942199fa489491e6b2cb8eafcac2b)
or,
![{\displaystyle {{\cfrac {dF(t)}{dt}}=\int _{a(t)}^{b(t)}{\frac {\partial f(x,t)}{\partial t}}~{\text{dx}}+f[b(t),t]~{\frac {\partial b(t)}{\partial t}}-f[a(t),t]~{\frac {\partial a(t)}{\partial t}}~.}\qquad \qquad \qquad \square }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf98c437a91388d57c2c4fdd38051ec69d3ff92c)