Complex Analysis/Sequences and series

Introduction

edit

In the Mathematics a listing (indexed family) of finally or infinitely many continuously numbered objects (for example numbers). The same object can also occur several times in a sequence. The object with the index   is called  -tes member or  -te component of the sequence. Endual and infinite sequences can be found in all areas of mathematics. With infinite sequences whose links are real numbers, the Analysis is concerned.

sequences as images

edit

If an index quantity   and a basic space   from which the components are selected, then one can understand a sequence   sequences are usually listed   (e.g.  

Examples of sequences

edit
  •   finite real number sequence or  LINK_INT_1730533169719_4___
  •   is a real number sequence.
  •   is a complex sequence of numbers.

In the sequencesden we consider infinite sequences with the index quantity   in the complex numbers.

Convergence of sequences

edit

If distances with a metric or length of vectors with a standard can be measured on a basic space, the sequence convergence can be defined. For convergent sequences   against a limit value  . The distance of the sequence elements to the limit value runs against 0.

Notation

edit

For the limit value   of a sequence   there is a separate symbol, you write:

  with  .

Definition sequence convergence

edit

Be   a complex number sequence and  . The convergence of   against   is then defined as follows:

 .

Notation

edit

In addition to the notation above, we can denote

  •   for   or
  • just   resp.   can be used.


Visualization of convergence

edit
 
Epsilon Environment and convergence

For all   there is an index bound   from which all components   of the sequence are an element of   environment of   (i.e.  

Semantics

edit

The meaning of the definition can be promised as follows:

 .

For an arbitrarily small   and you can always find an index bound   from distance to   is smaller than   (i.e.  

Series

edit

A series   is a special sequence  , which is generated from a given sequence   by the sequence of the partial sums  .

Convergence of series

edit

If the underlying vector space has a topology (e.g. generated by a metric space or a norm then the convergence of a series can be expression in analogue way   converges if the associated sequence of the partial sums   converges as sequence in vector space.

Absolute convergence

edit

A series   is absolutely convergent when the series  converges, i.e. the sequence of the partial sums   converges in  .

Learning Tasks

edit
  • Prove that the complex series   converges in  , but does not converge absolutely. Use a theorem and your knowledge from calculus.
  • Check the following series   for convergence. Calculate the first components of the partial sum as plot those numbers in the Gaussian number in a coordinate system. Explain why the sequence of the partial sums have these geometric properties. Calculate the limit of the series if it exists.

Series as mathematical object

edit

The term   of a series does not denote sequence of partial sums  . In the case of a convergence the expression   defines a complex number as a limit of the sequence of partial sums:

 

with  

Notation

edit

For the limit value   of a series   with  , you write:

 

Convergence of Series

edit

Be   a complex number sequence and  . The convergence of the series refers to the convergence of the partial sums   against  , i.e.:

 

This applies  .

Convergence of series with coefficients from an algebra

edit

The consideration of series convergence is a special case of the convergence of power series in a topological vector space or on a topological algebra.

Topological vector space

edit

The topological vector space  

  • an additive operation to calculate vectors for the partial sums  
  • a topology to be able to investigate the convergence of the sequence of partial sums  .

Task - series convergence in a topological vector space

edit

Let  . Calculate the limit of the series   as an introductory example with the tools of the analysis! Explain the similarities and differences of the series convergence in topological vector spaces and the special case  . Transfer the definition convergence sequences or series to topological vector spaces  . What are the similarities and differences?

Topological algebra - potency series

edit

Let   be a given topological algebra, then denote the algebra of power series by  

  • with a topology on the algebra   is the topological closure on the algebra   of polynomial with coefficients
  • an topology is generated by summation of the weighted vector lengths of the coefficients,
  • additive and multiplicative operation can also be defined similar to the agebra polynomials   and the algebra of power series  .

Example - Polynomial Algebra and Convex Combinations

edit

In the vector space   in the vector space  , these polynomials of the order 3 represent With CAS4Wiki, the track of the three-dimensional convex combination of the order 3 can be plotted. CAS4Wiki Commands  

Literature

edit
  • Bourbaki: Éléments de mathématique. Theory of the Ensemble II/ III, Paris 1970
  • Harro Heuser: Lehrbuch der Analysis, Part 1, Teubner Verlag, Stuttgart

References/>

edit

See also

edit



Page Information

edit

You can display this page as Wiki2Reveal slides

Wiki2Reveal

edit

The Wiki2Reveal slides were created for the Complex Analysis' and the Link for the Wiki2Reveal Slides was created with the link generator.

Translation and Version Control

edit

This page was translated based on the following Wikiversity source page and uses the concept of Translation and Version Control for a transparent language fork in a Wikiversity: