Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Characteristic polynomial/Companion matrix/Exercise
Language
Watch
Edit
Show that the
characteristic polynomial
of the so-called
companion matrix
M
=
(
0
1
0
…
0
0
0
1
…
0
⋮
⋮
⋱
⋱
⋮
0
0
…
0
1
−
a
0
−
a
1
…
−
a
n
−
2
−
a
n
−
1
)
{\displaystyle {}M={\begin{pmatrix}0&1&0&\ldots &0\\0&0&1&\ldots &0\\\vdots &\vdots &\ddots &\ddots &\vdots \\0&0&\ldots &0&1\\-a_{0}&-a_{1}&\ldots &-a_{n-2}&-a_{n-1}\end{pmatrix}}\,}
equals
χ
M
=
X
n
+
a
n
−
1
X
n
−
1
+
⋯
+
a
1
X
+
a
0
.
{\displaystyle {}\chi _{M}=X^{n}+a_{n-1}X^{n-1}+\cdots +a_{1}X+a_{0}\,.}
Create a solution