Wright State University Lake Campus/2019-1/diffraction
Abstract
editAbout this project
editThis paper was written as part of the lab component course in two classes. The first lesson the class learned was how to use Google scholar to properly reference an article.[1]
Motive
editThis is a lab about using two equations to solve for two unknowns. One unknown is the wavelength of a helium neon laser. The other unknown is the width of a slit a single slit diffraction experiment. However we did not solve for the second unknown, being that it was so small that we didn't have the equipment to measure it.
Theory
editTelescopes
editSection written by Phy1060:
The eye perceives parallel rays as coming from very far away from a star.
Fig A: [2] Telescope is looking directly at a star the two lenses bend the rays so they cross. One big advantage is that the energy is compressed into a smaller area at the eyepiece. The lens' job is to take in thelight from a distant star and bend the light to make the star seem brighter to the eye, as shown in Figure A, where you can see how the light's energy is concentrated from the area of the large objective to the size of the smaller eyepiece. [3]
In figure B, we now imagine offset by an angle alpha form the original star. [4] This telescope also increases the apparent magnitude of the angle (n orther words beta>alpha). The ratio beta/alpha is known as the angular magnifation.
Refraction
editHuygens' principle lets us treat wave propagation by considering every point on a wave front to be a secondary source of spherical wavelets.[5]
Mathematics
editThis report will focus only on an approximate formula that describes single slit diffraction for a screen that is far from the source, and at angles that are sufficiently small that:
We have four variables:
Four observations can be made using these variables: , , , and .
Algabraic Solution
editSolve with first-semester calculus
editSolve with advanced calculus
editAppendix
edit- ↑ For example, we found but did not read: Chaikin, P. M., Lubensky, T. C., & Witten, T. A. (1995). Principles of condensed matter physics (Vol. 1). Cambridge: Cambridge university press.
- ↑ Replace Figures A and B by single figure
- ↑ The eye, in turn, takes the parallel lines and causes them to meet at a point of the retina that represents the "location" of the star in the mind's eye.
- ↑ This is too abrupt: "we now imagine" what?
- ↑ https://opentextbc.ca/physicstestbook2/chapter/single-slit-diffraction/