Let us assume that the material is isotropic. Then,
R
T
⋅
ϵ
⋅
R
=
ϵ
and
R
T
⋅
μ
⋅
R
=
μ
∀
rotations
R
T
⋅
R
=
R
⋅
R
T
=
1
.
{\displaystyle {\boldsymbol {R}}^{T}\cdot {\boldsymbol {\epsilon }}\cdot {\boldsymbol {R}}={\boldsymbol {\epsilon }}\qquad {\text{and}}\qquad {\boldsymbol {R}}^{T}\cdot {\boldsymbol {\mu }}\cdot {\boldsymbol {R}}={\boldsymbol {\mu }}\qquad \forall ~~{\text{rotations}}~~{\boldsymbol {R}}^{T}\cdot {\boldsymbol {R}}={\boldsymbol {R}}\cdot {\boldsymbol {R}}^{T}={\boldsymbol {\mathit {1}}}~.}
Therefore, we can write
ϵ
=
ϵ
1
and
μ
=
μ
1
.
{\displaystyle {\boldsymbol {\epsilon }}=\epsilon ~{\boldsymbol {\mathit {1}}}\qquad {\text{and}}\qquad {\boldsymbol {\mu }}=\mu ~{\boldsymbol {\mathit {1}}}~.}
The Maxwell equations then take the form
(2)
∇
×
E
=
i
ω
μ
(
x
,
ω
)
H
(
x
)
;
∇
×
H
=
−
i
ω
ϵ
(
x
,
ω
)
E
(
x
)
.
{\displaystyle {\text{(2)}}\qquad {\boldsymbol {\nabla }}\times \mathbf {E} =i\omega ~\mu (\mathbf {x} ,\omega )~\mathbf {H} (\mathbf {x} )~;~~{\boldsymbol {\nabla }}\times \mathbf {H} =-i\omega ~\epsilon (\mathbf {x} ,\omega )~\mathbf {E} (\mathbf {x} )~.}
If we assume that
μ
{\displaystyle \mu }
and
ϵ
{\displaystyle \epsilon }
do not depend upon position, i.e.,
μ
≡
μ
(
ω
)
{\displaystyle \mu \equiv \mu (\omega )}
and
ϵ
≡
ϵ
(
ω
)
{\displaystyle \epsilon \equiv \epsilon (\omega )}
, and
take the curl of equations (2), we get
∇
×
(
∇
×
E
)
=
i
ω
μ
∇
×
H
=
ω
2
ϵ
μ
E
(
x
)
;
∇
×
(
∇
×
H
)
=
−
i
ω
ϵ
∇
×
E
=
ω
2
ϵ
μ
H
(
x
)
.
{\displaystyle {\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}\times \mathbf {E} )=i\omega ~\mu ~{\boldsymbol {\nabla }}\times \mathbf {H} =\omega ^{2}~\epsilon ~\mu ~\mathbf {E} (\mathbf {x} )~;~~{\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}\times \mathbf {H} )=-i\omega ~\epsilon ~{\boldsymbol {\nabla }}\times \mathbf {E} =\omega ^{2}~\epsilon ~\mu ~\mathbf {H} (\mathbf {x} )~.}
Using the identity
∇
×
(
∇
×
A
)
=
∇
(
∇
⋅
A
)
−
∇
2
A
{\displaystyle {\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}\times \mathbf {A} )={\boldsymbol {\nabla }}({\boldsymbol {\nabla }}\cdot \mathbf {A} )-\nabla ^{2}\mathbf {A} }
,
we get
(3)
∇
(
∇
⋅
E
)
−
∇
2
E
=
ω
2
ϵ
μ
E
(
x
)
;
∇
(
∇
⋅
H
)
−
∇
2
H
=
ω
2
ϵ
μ
H
(
x
)
.
{\displaystyle {\text{(3)}}\qquad {\boldsymbol {\nabla }}({\boldsymbol {\nabla }}\cdot \mathbf {E} )-\nabla ^{2}\mathbf {E} =\omega ^{2}~\epsilon ~\mu ~\mathbf {E} (\mathbf {x} )~;~~{\boldsymbol {\nabla }}({\boldsymbol {\nabla }}\cdot \mathbf {H} )-\nabla ^{2}\mathbf {H} =\omega ^{2}~\epsilon ~\mu ~\mathbf {H} (\mathbf {x} )~.}
Since
∇
⋅
B
=
0
;
∇
⋅
D
=
0
;
H
(
x
)
=
μ
−
1
(
ω
)
B
(
x
)
;
D
(
x
)
=
ϵ
(
ω
)
E
(
x
)
{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {B} =0~;{\boldsymbol {\nabla }}\cdot \mathbf {D} =0~;~~\mathbf {H} (\mathbf {x} )=\mu ^{-1}(\omega )~\mathbf {B} (\mathbf {x} )~;~\mathbf {D} (\mathbf {x} )=\epsilon (\omega )~\mathbf {E} (\mathbf {x} )}
we have
∇
⋅
H
=
μ
−
1
∇
⋅
B
=
0
and
∇
⋅
E
=
ϵ
−
1
∇
⋅
D
=
0
.
{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {H} =\mu ^{-1}~{\boldsymbol {\nabla }}\cdot \mathbf {B} =0\qquad {\text{and}}\qquad {\boldsymbol {\nabla }}\cdot \mathbf {E} =\epsilon ^{-1}~{\boldsymbol {\nabla }}\cdot \mathbf {D} =0~.}
Therefore, from equation (3), we have
∇
2
E
+
ω
2
ϵ
μ
E
(
x
)
=
0
;
∇
2
H
+
ω
2
ϵ
μ
H
(
x
)
=
0
.
{\displaystyle \nabla ^{2}\mathbf {E} +\omega ^{2}~\epsilon ~\mu ~\mathbf {E} (\mathbf {x} )={\boldsymbol {0}}~;~~\nabla ^{2}\mathbf {H} +\omega ^{2}~\epsilon ~\mu ~\mathbf {H} (\mathbf {x} )={\boldsymbol {0}}~.}
We can also write the above equations in the form
(4)
∇
2
E
+
κ
2
E
(
x
)
=
0
;
∇
2
H
+
κ
2
H
(
x
)
=
0
where
κ
2
=
ω
2
c
2
and
c
2
=
1
ϵ
μ
{\displaystyle {\text{(4)}}\qquad {\nabla ^{2}\mathbf {E} +\kappa ^{2}~\mathbf {E} (\mathbf {x} )={\boldsymbol {0}}~;~~\nabla ^{2}\mathbf {H} +\kappa ^{2}~\mathbf {H} (\mathbf {x} )={\boldsymbol {0}}\qquad {\text{where}}\quad \kappa ^{2}={\cfrac {\omega ^{2}}{c^{2}}}~~{\text{and}}~~c^{2}={\cfrac {1}{\epsilon ~\mu }}}}
where
c
{\displaystyle c}
is the phase velocity (the velocity at which the wave crests
travel). To have a propagating wave,
c
{\displaystyle c}
must be real. This will be the
case when
ϵ
{\displaystyle \epsilon }
and
μ
{\displaystyle \mu }
are both positive or both negative (see
Figure 2).
Figure 2. Transparency and opacity of a material as a function of
μ
{\displaystyle \mu }
and
ϵ
{\displaystyle \epsilon }
.
Let us look for plane wave solutions to the equations (4)
of the form
(5)
E
(
x
)
=
E
0
e
i
(
k
⋅
x
)
{\displaystyle {\text{(5)}}\qquad \mathbf {E} (\mathbf {x} )=\mathbf {E} _{0}~e^{i~(\mathbf {k} \cdot \mathbf {x} )}}
where
|
k
|
=
1
/
(
2
π
λ
)
{\displaystyle |\mathbf {k} |=1/(2~\pi ~\lambda )}
and
λ
{\displaystyle \lambda }
is the wavelength. Then,
using the first of equations (2) we have
(6)
H
(
x
)
=
−
i
ω
μ
∇
×
E
=
1
ω
μ
k
×
E
0
e
i
(
k
⋅
x
)
=
H
0
e
i
(
k
⋅
x
)
{\displaystyle {\text{(6)}}\qquad \mathbf {H} (\mathbf {x} )=-{\cfrac {i}{\omega ~\mu }}~{\boldsymbol {\nabla }}\times \mathbf {E} ={\cfrac {1}{\omega \mu }}~\mathbf {k} \times \mathbf {E} _{0}~e^{i~(\mathbf {k} \cdot \mathbf {x} )}=\mathbf {H} _{0}~e^{i~(\mathbf {k} \cdot \mathbf {x} )}}
where
H
0
=
1
/
(
ω
μ
)
k
×
E
0
{\displaystyle \mathbf {H} _{0}=1/(\omega \mu )~\mathbf {k} \times \mathbf {E} _{0}}
.
Since
∇
⋅
E
=
0
{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {E} =0}
, we have (in terms of components with
respect to a orthonormal Cartesian basis)
∇
⋅
E
=
∂
∂
x
m
[
E
0
m
e
i
(
k
l
x
l
)
]
=
i
k
l
∂
x
l
∂
x
m
E
0
m
e
i
(
k
l
x
l
)
=
i
k
m
E
0
m
e
i
(
k
l
x
l
)
=
i
(
k
⋅
E
0
)
e
i
(
k
⋅
x
)
=
0
.
{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {E} ={\frac {\partial }{\partial x_{m}}}\left[E_{0m}~e^{i(k_{l}~x_{l})}\right]=i~k_{l}~{\frac {\partial x_{l}}{\partial x_{m}}}~E_{0m}~e^{i(k_{l}~x_{l})}=i~k_{m}~E_{0m}~e^{i(k_{l}~x_{l})}=i~(\mathbf {k} \cdot \mathbf {E} _{0})~e^{i(\mathbf {k} \cdot \mathbf {x} )}=0~.}
Hence,
k
⋅
E
0
=
0
.
{\displaystyle {\mathbf {k} \cdot \mathbf {E} _{0}=0~.}}
Similarly, since
∇
⋅
H
=
0
{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {H} =0}
, we have
∇
⋅
H
=
1
ω
μ
[
∂
∂
x
m
(
E
m
p
q
k
p
E
0
q
e
i
(
k
l
x
l
)
)
]
=
i
ω
μ
[
E
m
p
q
k
p
E
0
q
k
m
e
i
(
k
l
x
l
)
]
=
i
ω
μ
k
⋅
(
k
×
E
0
)
e
i
(
k
⋅
x
)
.
{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {H} ={\cfrac {1}{\omega \mu }}\left[{\frac {\partial }{\partial x_{m}}}\left({\mathcal {E}}_{mpq}~k_{p}~E_{0q}~e^{i(k_{l}~x_{l})}\right)\right]={\cfrac {i}{\omega \mu }}\left[{\mathcal {E}}_{mpq}~k_{p}~E_{0q}~k_{m}~e^{i(k_{l}~x_{l})}\right]={\cfrac {i}{\omega \mu }}~\mathbf {k} \cdot (\mathbf {k} \times \mathbf {E} _{0})~e^{i(\mathbf {k} \cdot \mathbf {x} )}~.}
Hence,
k
⋅
H
0
=
0
.
{\displaystyle {\mathbf {k} \cdot \mathbf {H} _{0}=0~.}}
Plugging equation (5) into the first of equations
(4) we get
[
∇
2
E
+
κ
2
E
(
x
)
]
n
=
∂
∂
x
m
[
∂
∂
x
m
(
E
0
n
e
i
k
l
x
l
)
]
+
κ
2
E
0
n
e
i
k
l
x
l
=
∂
∂
x
m
[
E
0
n
(
i
k
l
∂
x
l
∂
x
m
)
e
i
k
l
x
l
]
+
κ
2
E
0
n
e
i
k
l
x
l
=
i
E
0
n
k
m
∂
∂
x
m
(
e
i
k
l
x
l
)
+
κ
2
E
0
n
e
i
k
l
x
l
=
i
E
0
n
k
m
(
i
k
l
∂
x
l
∂
x
m
)
e
i
k
l
x
l
+
κ
2
E
0
n
e
i
k
l
x
l
=
−
E
0
n
k
m
k
m
e
i
k
l
x
l
+
κ
2
E
0
n
e
i
k
l
x
l
.
{\displaystyle {\begin{aligned}\left[\nabla ^{2}\mathbf {E} +\kappa ^{2}~\mathbf {E} (\mathbf {x} )\right]_{n}&={\frac {\partial }{\partial x_{m}}}\left[{\frac {\partial }{\partial x_{m}}}\left(E_{0n}~e^{ik_{l}x_{l}}\right)\right]+\kappa ^{2}~E_{0n}~e^{ik_{l}x_{l}}\\&={\frac {\partial }{\partial x_{m}}}\left[E_{0n}~\left(i~k_{l}~{\frac {\partial x_{l}}{\partial x_{m}}}\right)~e^{ik_{l}x_{l}}\right]+\kappa ^{2}~E_{0n}~e^{ik_{l}x_{l}}\\&=i~E_{0n}~k_{m}~{\frac {\partial }{\partial x_{m}}}\left(e^{ik_{l}x_{l}}\right)+\kappa ^{2}~E_{0n}~e^{ik_{l}x_{l}}\\&=i~E_{0n}~k_{m}~\left(i~k_{l}~{\frac {\partial x_{l}}{\partial x_{m}}}\right)~e^{ik_{l}x_{l}}+\kappa ^{2}~E_{0n}~e^{ik_{l}x_{l}}\\&=-E_{0n}~k_{m}~k_{m}~e^{ik_{l}x_{l}}+\kappa ^{2}~E_{0n}~e^{ik_{l}x_{l}}~.\end{aligned}}}
Reverting back to Gibbs notation, we get
−
(
k
⋅
k
)
E
0
e
i
(
k
⋅
x
)
+
κ
2
E
0
e
i
(
k
⋅
x
)
=
0
.
{\displaystyle -(\mathbf {k} \cdot \mathbf {k} )~\mathbf {E} _{0}~e^{i~(\mathbf {k} \cdot \mathbf {x} )}+\kappa ^{2}~\mathbf {E} _{0}~e^{i~(\mathbf {k} \cdot \mathbf {x} )}={\boldsymbol {0}}~.}
Therefore,
k
⋅
k
=
κ
2
.
{\displaystyle {\mathbf {k} \cdot \mathbf {k} =\kappa ^{2}~.}}
Plugging the solution (6) into the second of equations
(4) (and using index notation as before) we get
[
∇
2
H
+
κ
2
H
(
x
)
]
n
=
1
ω
μ
{
∂
∂
x
m
[
∂
∂
x
m
(
E
n
p
q
k
p
E
0
q
e
i
k
l
x
l
)
]
+
κ
2
E
n
p
q
k
p
E
0
q
e
i
k
l
x
l
}
=
1
ω
μ
{
∂
∂
x
m
[
E
n
p
q
k
p
E
0
q
(
i
k
l
∂
x
l
∂
x
m
)
e
i
k
l
x
l
]
+
κ
2
E
n
p
q
k
p
E
0
q
e
i
k
l
x
l
}
=
1
ω
μ
{
i
E
n
p
q
k
p
k
m
E
0
q
[
i
k
l
∂
x
l
∂
x
m
]
e
i
k
l
x
l
+
κ
2
E
n
p
q
k
p
E
0
q
e
i
k
l
x
l
}
=
1
ω
μ
{
−
E
n
p
q
k
p
k
m
k
m
E
0
q
e
i
k
l
x
l
+
κ
2
E
n
p
q
k
p
E
0
q
e
i
k
l
x
l
}
{\displaystyle {\begin{aligned}\left[\nabla ^{2}\mathbf {H} +\kappa ^{2}~\mathbf {H} (\mathbf {x} )\right]_{n}&={\cfrac {1}{\omega \mu }}\left\{{\frac {\partial }{\partial x_{m}}}\left[{\frac {\partial }{\partial x_{m}}}\left({\mathcal {E}}_{npq}~k_{p}~E_{0q}~e^{ik_{l}x_{l}}\right)\right]+\kappa ^{2}~{\mathcal {E}}_{npq}~k_{p}~E_{0q}~e^{ik_{l}x_{l}}\right\}\\&={\cfrac {1}{\omega \mu }}\left\{{\frac {\partial }{\partial x_{m}}}\left[{\mathcal {E}}_{npq}~k_{p}~E_{0q}~\left(i~k_{l}~{\frac {\partial x_{l}}{\partial x_{m}}}\right)~e^{ik_{l}x_{l}}\right]+\kappa ^{2}~{\mathcal {E}}_{npq}~k_{p}~E_{0q}~e^{ik_{l}x_{l}}\right\}\\&={\cfrac {1}{\omega \mu }}\left\{i~{\mathcal {E}}_{npq}~k_{p}~k_{m}~E_{0q}~\left[i~k_{l}~{\frac {\partial x_{l}}{\partial x_{m}}}\right]~e^{ik_{l}x_{l}}+\kappa ^{2}~{\mathcal {E}}_{npq}~k_{p}~E_{0q}~e^{ik_{l}x_{l}}\right\}\\&={\cfrac {1}{\omega \mu }}\left\{-{\mathcal {E}}_{npq}~k_{p}~k_{m}~k_{m}~E_{0q}~e^{ik_{l}x_{l}}+\kappa ^{2}~{\mathcal {E}}_{npq}~k_{p}~E_{0q}~e^{ik_{l}x_{l}}\right\}\end{aligned}}}
In Gibbs notation, we then have
∇
2
H
+
κ
2
H
(
x
)
=
1
ω
μ
(
−
k
⋅
k
+
κ
2
)
k
×
E
0
e
i
(
k
⋅
x
)
=
0
.
{\displaystyle \nabla ^{2}\mathbf {H} +\kappa ^{2}~\mathbf {H} (\mathbf {x} )={\cfrac {1}{\omega \mu }}~(-\mathbf {k} \cdot \mathbf {k} +\kappa ^{2})~\mathbf {k} \times \mathbf {E} _{0}~e^{i(\mathbf {k} \cdot \mathbf {x} )}={\boldsymbol {0}}~.}
Therefore, once again, we get
k
⋅
k
=
κ
2
.
{\displaystyle {\mathbf {k} \cdot \mathbf {k} =\kappa ^{2}~.}}
The following is based on the description given in [Lorrain88] .
Figure 3 shows an electromagnetic wave that is
incident upon an interface separating two mediums.
Figure 3. Reflection of an electromagnetic wave at an interface.
We ignore the time-dependent component of the electric fields and assume
that we can express the waves shown in Figure 3 in the
form
E
i
=
E
0
i
e
i
(
k
i
⋅
x
)
E
r
=
E
0
r
e
i
(
k
r
⋅
x
)
E
t
=
E
0
t
e
i
(
k
t
⋅
x
)
{\displaystyle {\begin{aligned}\mathbf {E} _{i}&=\mathbf {E} _{0i}~e^{i(\mathbf {k} _{i}\cdot \mathbf {x} )}\\\mathbf {E} _{r}&=\mathbf {E} _{0r}~e^{i(\mathbf {k} _{r}\cdot \mathbf {x} )}\\\mathbf {E} _{t}&=\mathbf {E} _{0t}~e^{i(\mathbf {k} _{t}\cdot \mathbf {x} )}\end{aligned}}}
where
k
i
,
k
r
,
k
t
{\displaystyle \mathbf {k} _{i},\mathbf {k} _{r},\mathbf {k} _{t}}
are the wave vectors.
Since the oscillations at the interface must have the same period (the
requirement of continuity), we must have
k
i
⋅
x
=
k
r
⋅
x
=
k
t
⋅
x
∀
x
on the interface
.
{\displaystyle \mathbf {k} _{i}\cdot \mathbf {x} =\mathbf {k} _{r}\cdot \mathbf {x} =\mathbf {k} _{t}\cdot \mathbf {x} \qquad \forall \mathbf {x} ~~{\text{on the interface}}~.}
This means that the tangential components of
k
i
,
k
r
,
k
t
{\displaystyle \mathbf {k} _{i},\mathbf {k} _{r},\mathbf {k} _{t}}
must
be equal at the interface. Therefore,
|
k
i
|
sin
θ
i
=
|
k
r
|
sin
θ
r
=
|
k
t
|
sin
θ
t
.
{\displaystyle |\mathbf {k} _{i}|~\sin \theta _{i}=|\mathbf {k} _{r}|~\sin \theta _{r}=|\mathbf {k} _{t}|~\sin \theta _{t}~.}
Now,
|
k
i
|
=
κ
i
=
ω
c
1
;
|
k
r
|
=
κ
r
=
ω
c
1
;
|
k
t
|
=
κ
t
=
ω
c
2
{\displaystyle |\mathbf {k} _{i}|=\kappa _{i}={\cfrac {\omega }{c_{1}}}~;~~|\mathbf {k} _{r}|=\kappa _{r}={\cfrac {\omega }{c_{1}}}~;~~|\mathbf {k} _{t}|=\kappa _{t}={\cfrac {\omega }{c_{2}}}}
where
c
1
{\displaystyle c_{1}}
and
c
2
{\displaystyle c_{2}}
are the phase velocities in medium 1 and medium 2,
respectively. Hence we have,
ω
c
1
sin
θ
i
=
ω
c
1
sin
θ
r
=
ω
c
2
sin
θ
t
.
{\displaystyle {\cfrac {\omega }{c_{1}}}~\sin \theta _{i}={\cfrac {\omega }{c_{1}}}~\sin \theta _{r}={\cfrac {\omega }{c_{2}}}~\sin \theta _{t}~.}
This implies that
θ
i
=
θ
r
and
sin
θ
i
sin
θ
t
=
c
1
c
2
.
{\displaystyle \theta _{i}=\theta _{r}\qquad {\text{and}}\qquad {\cfrac {\sin \theta _{i}}{\sin \theta _{t}}}={\cfrac {c_{1}}{c_{2}}}~.}
The refractive index is defined as
n
:=
c
0
c
{\displaystyle n:={\cfrac {c_{0}}{c}}}
where
c
0
{\displaystyle c_{0}}
is the phase velocity is vacuum. Therefore, we get
sin
θ
i
sin
θ
t
=
n
2
n
1
(Snells Law)
.
{\displaystyle {\cfrac {\sin \theta _{i}}{\sin \theta _{t}}}={\cfrac {n_{2}}{n_{1}}}\qquad {\mbox{(Snells Law)}}~.}
Polarized wave with the Ei parallel to the plane of incidence
edit
Consider the
p
{\displaystyle p}
-polarized wave shown in Figure 4. The
figure represents an infinite wave polarized with the
E
i
{\displaystyle \mathbf {E} _{i}}
vector
polarized parallel to the plane of incidence. This is also called the
TM (transverse magnetic) case.
Figure 4. Infinite wave polarized with the
E
i
{\displaystyle \mathbf {E} _{i}}
-vector parallel to the plane of incidence.
Let us define
κ
1
:=
|
k
i
|
=
|
k
r
|
and
κ
2
:=
|
k
t
|
.
{\displaystyle \kappa _{1}:=|\mathbf {k} _{i}|=|\mathbf {k} _{r}|\qquad {\text{and}}\qquad \kappa _{2}:=|\mathbf {k} _{t}|~.}
Recall that,
E
i
(
x
)
=
E
0
i
e
i
(
k
i
⋅
x
)
E
r
(
x
)
=
E
0
r
e
i
(
k
r
⋅
x
)
E
t
(
x
)
=
E
0
t
e
i
(
k
t
⋅
x
)
{\displaystyle {\begin{aligned}\mathbf {E} _{i}(\mathbf {x} )&=\mathbf {E} _{0i}~e^{i(\mathbf {k} _{i}\cdot \mathbf {x} )}\\\mathbf {E} _{r}(\mathbf {x} )&=\mathbf {E} _{0r}~e^{i(\mathbf {k} _{r}\cdot \mathbf {x} )}\\\mathbf {E} _{t}(\mathbf {x} )&=\mathbf {E} _{0t}~e^{i(\mathbf {k} _{t}\cdot \mathbf {x} )}\end{aligned}}}
Let us choose an orthonormal basis (
e
1
,
e
2
,
e
3
{\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}}
) such that
the
e
1
{\displaystyle \mathbf {e} _{1}}
vector lies on the interface and is parallel the plane of
incidence. The
e
2
{\displaystyle \mathbf {e} _{2}}
vector lies on the plane of incidence and the
e
3
{\displaystyle \mathbf {e} _{3}}
vector is normal to the interface. Then the vectors
k
i
{\displaystyle \mathbf {k} _{i}}
,
k
r
{\displaystyle \mathbf {k} _{r}}
, and
k
t
{\displaystyle \mathbf {k} _{t}}
may be expressed in this basis as
k
i
=
κ
1
sin
θ
i
e
1
−
κ
1
cos
θ
i
e
3
k
r
=
κ
1
sin
θ
r
e
1
+
κ
1
cos
θ
r
e
3
k
t
=
κ
2
sin
θ
t
e
1
−
κ
2
cos
θ
t
e
3
.
{\displaystyle {\begin{aligned}\mathbf {k} _{i}&=\kappa _{1}~\sin \theta _{i}~\mathbf {e} _{1}-\kappa _{1}~\cos \theta _{i}~\mathbf {e} _{3}\\\mathbf {k} _{r}&=\kappa _{1}~\sin \theta _{r}~\mathbf {e} _{1}+\kappa _{1}~\cos \theta _{r}~\mathbf {e} _{3}\\\mathbf {k} _{t}&=\kappa _{2}~\sin \theta _{t}~\mathbf {e} _{1}-\kappa _{2}~\cos \theta _{t}~\mathbf {e} _{3}~.\end{aligned}}}
Similarly, defining
E
i
:=
|
E
0
i
|
;
E
r
:=
|
E
0
r
|
;
E
t
:=
|
E
0
t
|
{\displaystyle {\mathcal {E}}_{i}:=|\mathbf {E} _{0i}|~;~~{\mathcal {E}}_{r}:=|\mathbf {E} _{0r}|~;~~{\mathcal {E}}_{t}:=|\mathbf {E} _{0t}|}
we get
E
0
i
=
E
i
cos
θ
i
e
1
+
E
i
sin
θ
i
e
3
E
0
r
=
−
E
r
cos
θ
r
e
1
+
E
r
sin
θ
r
e
3
E
0
t
=
E
t
cos
θ
t
e
1
+
E
t
sin
θ
t
e
3
.
{\displaystyle {\begin{aligned}\mathbf {E} _{0i}&={\mathcal {E}}_{i}~\cos \theta _{i}~\mathbf {e} _{1}+{\mathcal {E}}_{i}~\sin \theta _{i}~\mathbf {e} _{3}\\\mathbf {E} _{0r}&=-{\mathcal {E}}_{r}~\cos \theta _{r}~\mathbf {e} _{1}+{\mathcal {E}}_{r}~\sin \theta _{r}~\mathbf {e} _{3}\\\mathbf {E} _{0t}&={\mathcal {E}}_{t}~\cos \theta _{t}~\mathbf {e} _{1}+{\mathcal {E}}_{t}~\sin \theta _{t}~\mathbf {e} _{3}~.\end{aligned}}}
Using the definition
H
0
:=
1
ω
μ
k
×
E
0
{\displaystyle \mathbf {H} _{0}:={\cfrac {1}{\omega \mu }}~\mathbf {k} \times \mathbf {E} _{0}}
we then get
H
0
i
=
κ
1
ω
μ
1
E
i
e
2
⟹
H
i
:=
|
H
0
i
|
=
κ
1
E
i
ω
μ
1
H
0
r
=
−
κ
1
ω
μ
1
E
r
e
2
⟹
H
r
:=
|
H
0
r
|
=
κ
1
E
r
ω
μ
1
H
0
t
=
κ
2
ω
μ
2
E
t
e
2
⟹
H
t
:=
|
H
0
t
|
=
κ
2
E
t
ω
μ
2
.
{\displaystyle {\begin{aligned}\mathbf {H} _{0i}&={\cfrac {\kappa _{1}}{\omega \mu _{1}}}~{\mathcal {E}}_{i}~\mathbf {e} _{2}\qquad \implies \qquad {\mathcal {H}}_{i}:=|\mathbf {H} _{0i}|={\cfrac {\kappa _{1}~{\mathcal {E}}_{i}}{\omega \mu _{1}}}\\\mathbf {H} _{0r}&=-{\cfrac {\kappa _{1}}{\omega \mu _{1}}}~{\mathcal {E}}_{r}~\mathbf {e} _{2}\qquad \implies \qquad {\mathcal {H}}_{r}:=|\mathbf {H} _{0r}|={\cfrac {\kappa _{1}~{\mathcal {E}}_{r}}{\omega \mu _{1}}}\\\mathbf {H} _{0t}&={\cfrac {\kappa _{2}}{\omega \mu _{2}}}~{\mathcal {E}}_{t}~\mathbf {e} _{2}\qquad \implies \qquad {\mathcal {H}}_{t}:=|\mathbf {H} _{0t}|={\cfrac {\kappa _{2}~{\mathcal {E}}_{t}}{\omega \mu _{2}}}~.\end{aligned}}}
Hence, with the vector
x
{\displaystyle \mathbf {x} }
expressed as
x
=
x
1
e
1
+
x
2
e
2
+
x
3
e
3
{\displaystyle \mathbf {x} =x_{1}~\mathbf {e} _{1}+x_{2}~\mathbf {e} _{2}+x_{3}~\mathbf {e} _{3}}
, we get
E
i
(
x
)
=
(
E
i
cos
θ
i
e
1
+
E
i
sin
θ
i
e
3
)
e
i
[
κ
1
(
x
1
sin
θ
i
−
x
3
cos
θ
i
)
]
E
r
(
x
)
=
(
−
E
r
cos
θ
r
e
1
+
E
r
sin
θ
r
e
3
)
e
i
[
κ
1
(
x
1
sin
θ
r
+
x
3
cos
θ
r
)
]
E
t
(
x
)
=
(
E
t
cos
θ
t
e
1
+
E
t
sin
θ
t
e
3
)
e
i
[
κ
2
(
x
1
sin
θ
t
−
x
3
cos
θ
t
)
]
.
{\displaystyle {\begin{aligned}\mathbf {E} _{i}(\mathbf {x} )&=({\mathcal {E}}_{i}~\cos \theta _{i}~\mathbf {e} _{1}+{\mathcal {E}}_{i}~\sin \theta _{i}~\mathbf {e} _{3})~e^{i[\kappa _{1}(x_{1}\sin \theta _{i}-x_{3}\cos \theta _{i})]}\\\mathbf {E} _{r}(\mathbf {x} )&=(-{\mathcal {E}}_{r}~\cos \theta _{r}~\mathbf {e} _{1}+{\mathcal {E}}_{r}~\sin \theta _{r}~\mathbf {e} _{3})~e^{i[\kappa _{1}(x_{1}\sin \theta _{r}+x_{3}\cos \theta _{r})]}\\\mathbf {E} _{t}(\mathbf {x} )&=({\mathcal {E}}_{t}~\cos \theta _{t}~\mathbf {e} _{1}+{\mathcal {E}}_{t}~\sin \theta _{t}~\mathbf {e} _{3})~e^{i[\kappa _{2}(x_{1}\sin \theta _{t}-x_{3}\cos \theta _{t})]}~.\end{aligned}}}
Similarly,
H
i
(
x
)
=
−
H
i
e
2
e
i
[
κ
1
(
x
1
sin
θ
i
−
x
3
cos
θ
i
)
]
H
r
(
x
)
=
−
H
r
e
2
e
i
[
κ
1
(
x
1
sin
θ
r
+
x
3
cos
θ
r
)
]
H
t
(
x
)
=
−
H
t
e
2
e
i
[
κ
2
(
x
1
sin
θ
t
−
x
3
cos
θ
t
)
]
.
{\displaystyle {\begin{aligned}\mathbf {H} _{i}(\mathbf {x} )&=-{\mathcal {H}}_{i}~\mathbf {e} _{2}~~e^{i[\kappa _{1}(x_{1}\sin \theta _{i}-x_{3}\cos \theta _{i})]}\\\mathbf {H} _{r}(\mathbf {x} )&=-{\mathcal {H}}_{r}~\mathbf {e} _{2}~~e^{i[\kappa _{1}(x_{1}\sin \theta _{r}+x_{3}\cos \theta _{r})]}\\\mathbf {H} _{t}(\mathbf {x} )&=-{\mathcal {H}}_{t}~\mathbf {e} _{2}~~e^{i[\kappa _{2}(x_{1}\sin \theta _{t}-x_{3}\cos \theta _{t})]}~.\end{aligned}}}
At the interface, continuity requires that the tangential components of
the vectors
E
{\displaystyle \mathbf {E} }
and
H
{\displaystyle \mathbf {H} }
are continuous. Clearly, from the above
equations, the
H
0
{\displaystyle \mathbf {H} _{0}}
vectors are tangential to the interface. Also,
at the interface
x
3
=
0
{\displaystyle x_{3}=0}
and
x
1
{\displaystyle x_{1}}
is arbitrary. Hence, continuity
of the components of
H
{\displaystyle \mathbf {H} }
at the interface can be achieved if
H
i
+
H
r
=
H
t
.
{\displaystyle {\mathcal {H}}_{i}+{\mathcal {H}}_{r}={\mathcal {H}}_{t}~.}
In terms of the electric field, we then have
κ
1
ω
μ
1
E
i
+
κ
1
ω
μ
1
E
r
=
κ
2
ω
μ
2
E
t
.
{\displaystyle {\cfrac {\kappa _{1}}{\omega \mu _{1}}}~{\mathcal {E}}_{i}+{\cfrac {\kappa _{1}}{\omega \mu _{1}}}~{\mathcal {E}}_{r}={\cfrac {\kappa _{2}}{\omega \mu _{2}}}~{\mathcal {E}}_{t}~.}
Recall that the refractive index is given by
n
=
c
0
/
c
=
c
0
κ
/
ω
{\displaystyle n=c_{0}/c=c_{0}~\kappa /\omega }
.
Therefore, we can write the above equation as
(7)
n
1
μ
1
(
E
i
+
E
r
)
=
n
2
μ
2
E
t
.
{\displaystyle {\text{(7)}}\qquad {{\cfrac {n_{1}}{\mu _{1}}}~({\mathcal {E}}_{i}+{\mathcal {E}}_{r})={\cfrac {n_{2}}{\mu _{2}}}~{\mathcal {E}}_{t}~.}}
The tangential components of the
E
{\displaystyle \mathbf {E} }
vectors at the interface are given
by
E
×
e
3
{\displaystyle \mathbf {E} \times \mathbf {e} _{3}}
. Therefore, the tangential components of the
E
0
{\displaystyle \mathbf {E} _{0}}
vectors at the interface are
E
0
i
×
e
3
=
−
E
i
cos
θ
i
e
2
E
0
r
×
e
3
=
E
r
cos
θ
r
e
2
E
0
t
×
e
3
=
−
E
t
cos
θ
t
e
2
.
{\displaystyle {\begin{aligned}\mathbf {E} _{0i}\times \mathbf {e} _{3}&=-{\mathcal {E}}_{i}~\cos \theta _{i}~\mathbf {e} _{2}\\\mathbf {E} _{0r}\times \mathbf {e} _{3}&={\mathcal {E}}_{r}~\cos \theta _{r}~\mathbf {e} _{2}\\\mathbf {E} _{0t}\times \mathbf {e} _{3}&=-{\mathcal {E}}_{t}~\cos \theta _{t}~\mathbf {e} _{2}~.\end{aligned}}}
Using the arbitrariness of
x
1
{\displaystyle x_{1}}
and from the continuity of the
E
{\displaystyle \mathbf {E} }
vectors at the interface, we have
E
i
cos
θ
i
−
E
r
cos
θ
r
=
E
t
cos
θ
t
.
{\displaystyle {\mathcal {E}}_{i}~\cos \theta _{i}-{\mathcal {E}}_{r}~\cos \theta _{r}={\mathcal {E}}_{t}~\cos \theta _{t}~.}
Since
θ
i
=
θ
r
{\displaystyle \theta _{i}=\theta _{r}}
, we have
(8)
(
E
i
−
E
r
)
cos
θ
i
=
E
t
cos
θ
t
.
{\displaystyle {\text{(8)}}\qquad {({\mathcal {E}}_{i}-{\mathcal {E}}_{r})~\cos \theta _{i}={\mathcal {E}}_{t}~\cos \theta _{t}~.}}
From equations (7) and (8), we get two
more relations:
(9)
E
r
E
i
=
n
2
μ
2
cos
θ
i
−
n
1
μ
1
cos
θ
t
n
2
μ
2
cos
θ
i
+
n
1
μ
1
cos
θ
t
{\displaystyle {\text{(9)}}\qquad {{\cfrac {{\mathcal {E}}_{r}}{{\mathcal {E}}_{i}}}={\cfrac {{\cfrac {n_{2}}{\mu _{2}}}~\cos \theta _{i}-{\cfrac {n_{1}}{\mu _{1}}}~\cos \theta _{t}}{{\cfrac {n_{2}}{\mu _{2}}}~\cos \theta _{i}+{\cfrac {n_{1}}{\mu _{1}}}~\cos \theta _{t}}}}}
and
(10)
E
t
E
i
=
2
n
1
μ
1
cos
θ
i
n
2
μ
2
cos
θ
i
+
n
1
μ
1
cos
θ
t
.
{\displaystyle {\text{(10)}}\qquad {{\cfrac {{\mathcal {E}}_{t}}{{\mathcal {E}}_{i}}}={\cfrac {2~{\cfrac {n_{1}}{\mu _{1}}}~\cos \theta _{i}}{{\cfrac {n_{2}}{\mu _{2}}}~\cos \theta _{i}+{\cfrac {n_{1}}{\mu _{1}}}~\cos \theta _{t}}}~.}}
Equations (7), (8), (9),
and (10) are the Fresnel equations for
p
{\displaystyle p}
-polarized
electromagnetic waves.
If we define,
μ
r
1
:=
μ
1
μ
0
and
μ
r
2
:=
μ
2
μ
0
{\displaystyle \mu _{r1}:={\cfrac {\mu _{1}}{\mu _{0}}}\qquad {\text{and}}\qquad \mu _{r2}:={\cfrac {\mu _{2}}{\mu _{0}}}}
where
μ
0
{\displaystyle \mu _{0}}
is the permeability of vacuum, then we can write equations
(9) and (10) as
(11)
E
r
E
i
=
n
2
μ
r
2
cos
θ
i
−
n
1
μ
r
1
cos
θ
t
n
2
μ
r
2
cos
θ
i
+
n
1
μ
r
1
cos
θ
t
;
E
t
E
i
=
2
n
1
μ
r
1
cos
θ
i
n
2
μ
r
2
cos
θ
i
+
n
1
μ
r
1
cos
θ
t
.
{\displaystyle {\text{(11)}}\qquad {\cfrac {{\mathcal {E}}_{r}}{{\mathcal {E}}_{i}}}={\cfrac {{\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{i}-{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{t}}{{\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{i}+{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{t}}}~;~~{\cfrac {{\mathcal {E}}_{t}}{{\mathcal {E}}_{i}}}={\cfrac {2~{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}}{{\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{i}+{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{t}}}~.}
Note that
n
2
μ
r
2
cos
θ
i
=
n
1
μ
r
1
cos
θ
t
⟹
E
r
=
0
.
{\displaystyle {\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{i}={\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{t}\qquad \implies \qquad {\mathcal {E}}_{r}=0~.}
For non-magnetic materials we have
μ
r
1
=
μ
r
2
=
1
{\displaystyle \mu _{r1}=\mu _{r2}=1}
. Hence,
(12)
n
2
n
1
=
cos
θ
t
cos
θ
i
.
{\displaystyle {\text{(12)}}\qquad {\cfrac {n_{2}}{n_{1}}}={\cfrac {\cos \theta _{t}}{\cos \theta _{i}}}~.}
Also, from Snell's law
(13)
n
2
n
1
=
sin
θ
i
sin
θ
t
.
{\displaystyle {\text{(13)}}\qquad {\cfrac {n_{2}}{n_{1}}}={\cfrac {\sin \theta _{i}}{\sin \theta _{t}}}~.}
Combining equations (12) and (13), we get
cos
θ
t
sin
θ
t
−
cos
θ
i
sin
θ
i
=
0
⟹
sin
(
2
θ
t
)
−
sin
(
2
θ
i
)
=
0
⟹
cos
(
θ
t
+
θ
i
)
sin
(
θ
t
−
θ
i
)
=
0
.
{\displaystyle \cos \theta _{t}~\sin \theta _{t}-\cos \theta _{i}~\sin \theta _{i}=0\quad \implies \quad \sin(2~\theta _{t})-\sin(2~\theta _{i})=0\quad \implies \quad \cos(\theta _{t}+\theta _{i})~\sin(\theta _{t}-\theta _{i})=0~.}
If
n
1
≠
n
2
{\displaystyle n_{1}\neq n_{2}}
we have
sin
(
θ
t
−
θ
i
)
≠
0
{\displaystyle \sin(\theta _{t}-\theta _{i})\neq 0}
. Hence,
(14)
cos
(
θ
t
+
θ
i
)
=
0
⟹
θ
t
+
θ
i
=
π
2
.
{\displaystyle {\text{(14)}}\qquad \cos(\theta _{t}+\theta _{i})=0\qquad \implies \qquad {\theta _{t}+\theta _{i}={\cfrac {\pi }{2}}}~.}
This is the condition that defines Brewster's angle
(
θ
i
=
θ
B
{\displaystyle \theta _{i}=\theta _{B}}
). Plugging
equation (14) into equation (13), we get
sin
θ
B
sin
(
π
/
2
−
θ
B
)
=
tan
θ
B
=
n
2
n
1
.
{\displaystyle {\cfrac {\sin \theta _{B}}{\sin(\pi /2-\theta _{B})}}=\tan \theta _{B}={\cfrac {n_{2}}{n_{1}}}~.}
This relation can be used to solve for Brewster's angle for various media.
At Brewster's angle, we have
E
r
E
i
=
n
2
μ
r
2
cos
θ
B
−
n
1
μ
r
1
sin
θ
B
n
2
μ
r
2
cos
θ
B
+
n
1
μ
r
1
sin
θ
B
=
0
.
{\displaystyle {\cfrac {{\mathcal {E}}_{r}}{{\mathcal {E}}_{i}}}={\cfrac {{\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{B}-{\cfrac {n_{1}}{\mu _{r1}}}~\sin \theta _{B}}{{\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{B}+{\cfrac {n_{1}}{\mu _{r1}}}~\sin \theta _{B}}}=0~.}
Hence, the sign of
E
r
/
E
i
{\displaystyle {\mathcal {E}}_{r}/{\mathcal {E}}_{i}}
changes at the Brewster angle.
Also, note that if
n
2
=
−
n
1
{\displaystyle n_{2}=-n_{1}}
and
μ
2
=
−
μ
1
{\displaystyle \mu _{2}=-\mu _{1}}
, since
n
=
c
0
ϵ
μ
{\displaystyle n=c_{0}~{\sqrt {\epsilon \mu }}}
we must have
ϵ
2
=
−
ϵ
1
{\displaystyle \epsilon _{2}=-\epsilon _{1}}
. Then,
by Snell's law
sin
θ
t
sin
θ
i
=
−
1
⟹
θ
t
=
−
θ
i
.
{\displaystyle {\cfrac {\sin \theta _{t}}{\sin \theta _{i}}}=-1\qquad \implies \qquad \theta _{t}=-\theta _{i}~.}
Hence,
E
r
E
i
=
n
1
μ
r
1
cos
θ
i
−
n
1
μ
r
1
cos
θ
i
n
1
μ
r
1
cos
θ
i
+
n
1
μ
r
1
cos
θ
i
=
0
and
E
t
E
i
=
2
n
1
μ
r
1
cos
θ
i
n
1
μ
r
1
cos
θ
i
+
n
1
μ
r
1
cos
θ
i
=
1
.
{\displaystyle {\cfrac {{\mathcal {E}}_{r}}{{\mathcal {E}}_{i}}}={\cfrac {{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}-{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}}{{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}+{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}}}=0\qquad {\text{and}}\qquad {\cfrac {{\mathcal {E}}_{t}}{{\mathcal {E}}_{i}}}={\cfrac {2~{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}}{{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}+{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}}}=1~.}
So the radiation is transmitted at the angle
θ
t
=
−
θ
i
{\displaystyle \theta _{t}=-\theta _{i}}
and
none is reflected.
More can be said about the matter. In fact, an interface separating media
with
ϵ
2
=
−
ϵ
1
{\displaystyle \epsilon _{2}=-\epsilon _{1}}
and
μ
2
=
−
μ
1
{\displaystyle \mu _{2}=-\mu _{1}}
"behaves like a
mirror". Consider the interface in Figure 5. Suppose that
on the left side of the mirror,
E
{\displaystyle \mathbf {E} }
and
H
{\displaystyle \mathbf {H} }
solve Maxwell's
equations
∇
×
E
+
i
ω
μ
1
H
=
0
;
∇
×
H
−
i
ω
ϵ
1
E
=
0
.
{\displaystyle {\boldsymbol {\nabla }}\times \mathbf {E} +i\omega ~\mu _{1}~\mathbf {H} ={\boldsymbol {0}}~;~~{\boldsymbol {\nabla }}\times \mathbf {H} -i\omega ~\epsilon _{1}~\mathbf {E} ={\boldsymbol {0}}~.}
Let the solution be of the form
E
(
x
)
=
[
E
1
(
x
)
,
E
2
(
x
)
,
E
3
(
x
)
]
and
H
(
x
)
=
[
H
1
(
x
)
,
H
2
(
x
)
,
H
3
(
x
)
]
.
{\displaystyle \mathbf {E} (\mathbf {x} )=[E_{1}(\mathbf {x} ),E_{2}(\mathbf {x} ),E_{3}(\mathbf {x} )]~~{\text{and}}~~\mathbf {H} (\mathbf {x} )=[H_{1}(\mathbf {x} ),H_{2}(\mathbf {x} ),H_{3}(\mathbf {x} )]~.}
Suppose that the right hand side of the interface has reflected fields,
i.e.,
E
(
x
)
=
[
−
E
1
(
−
x
1
,
x
2
,
x
3
)
,
E
2
(
−
x
1
,
x
2
,
x
3
)
,
E
3
(
−
x
1
,
x
2
,
x
3
)
]
and
H
(
x
)
=
[
−
H
1
(
−
x
1
,
x
2
,
x
3
)
,
H
2
(
−
x
1
,
x
2
,
x
3
)
,
H
3
(
−
x
1
,
x
2
,
x
3
)
]
.
{\displaystyle {\begin{aligned}\mathbf {E} (\mathbf {x} )&=[-E_{1}(-x_{1},x_{2},x_{3}),E_{2}(-x_{1},x_{2},x_{3}),E_{3}(-x_{1},x_{2},x_{3})]~~{\text{and}}~~\\\mathbf {H} (\mathbf {x} )&=[-H_{1}(-x_{1},x_{2},x_{3}),H_{2}(-x_{1},x_{2},x_{3}),H_{3}(-x_{1},x_{2},x_{3})]~.\end{aligned}}}
Figure 5. Reflection at an interface due to negative
ϵ
{\displaystyle \epsilon }
and
μ
{\displaystyle \mu }
.
Also, on the right hand side, let
∇
×
E
=
[
F
1
(
x
)
,
F
2
(
x
)
,
F
3
(
x
)
]
.
{\displaystyle {\boldsymbol {\nabla }}\times \mathbf {E} =[F_{1}(\mathbf {x} ),F_{2}(\mathbf {x} ),F_{3}(\mathbf {x} )]~.}
Then, to the right of the interface, we have
∇
×
E
=
{
[
∂
∂
x
2
[
E
3
(
−
x
1
,
x
2
,
x
3
)
]
−
∂
∂
x
3
[
E
2
(
−
x
1
,
x
2
,
x
3
)
]
]
,
[
−
∂
∂
x
3
[
E
1
(
−
x
1
,
x
2
,
x
3
)
]
+
∂
∂
x
1
[
E
3
(
−
x
1
,
x
2
,
x
3
)
]
]
,
[
−
∂
∂
x
1
[
E
2
(
−
x
1
,
x
2
,
x
3
)
]
+
∂
∂
x
2
[
E
1
(
−
x
1
,
x
2
,
x
3
)
]
]
}
{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\times \mathbf {E} =&\left\{\left[{\frac {\partial }{\partial x_{2}}}[E_{3}(-x_{1},x_{2},x_{3})]-{\frac {\partial }{\partial x_{3}}}[E_{2}(-x_{1},x_{2},x_{3})]\right],\right.\\&\left[-{\frac {\partial }{\partial x_{3}}}[E_{1}(-x_{1},x_{2},x_{3})]+{\frac {\partial }{\partial x_{1}}}[E_{3}(-x_{1},x_{2},x_{3})]\right],\\&\left.\left[-{\frac {\partial }{\partial x_{1}}}[E_{2}(-x_{1},x_{2},x_{3})]+{\frac {\partial }{\partial x_{2}}}[E_{1}(-x_{1},x_{2},x_{3})]\right]\right\}\end{aligned}}}
or,
∇
×
E
=
[
F
1
(
−
x
1
,
x
2
,
x
3
)
,
−
F
2
(
−
x
1
,
x
2
,
x
3
)
,
−
F
3
(
x
1
,
x
2
,
x
3
)
]
.
{\displaystyle {\boldsymbol {\nabla }}\times \mathbf {E} =[F_{1}(-x_{1},x_{2},x_{3}),-F_{2}(-x_{1},x_{2},x_{3}),-F_{3}(x_{1},x_{2},x_{3})]~.}
Polarized wave with the Ei perpendicular to the plane of incidence
edit
For a plane polarized wave with the
E
i
{\displaystyle \mathbf {E} _{i}}
vector perpendicular to the
plane of incidence, we have
E
0
i
=
E
i
e
2
E
0
r
=
E
r
e
2
E
0
t
=
E
t
e
2
.
{\displaystyle {\begin{aligned}\mathbf {E} _{0i}&={\mathcal {E}}_{i}~\mathbf {e} _{2}\\\mathbf {E} _{0r}&={\mathcal {E}}_{r}~\mathbf {e} _{2}\\\mathbf {E} _{0t}&={\mathcal {E}}_{t}~\mathbf {e} _{2}~.\end{aligned}}}
Therefore,
H
0
i
=
κ
1
ω
μ
1
(
E
i
cos
θ
i
e
1
+
E
i
sin
θ
i
e
3
)
H
0
r
=
κ
1
ω
μ
1
(
−
E
r
cos
θ
r
e
1
+
E
r
sin
θ
r
e
3
)
H
0
t
=
κ
2
ω
μ
2
(
E
t
cos
θ
t
e
1
+
E
t
sin
θ
t
e
3
)
.
{\displaystyle {\begin{aligned}\mathbf {H} _{0i}&={\cfrac {\kappa _{1}}{\omega \mu _{1}}}~({\mathcal {E}}_{i}~\cos \theta _{i}~\mathbf {e} _{1}+{\mathcal {E}}_{i}~\sin \theta _{i}~\mathbf {e} _{3})\\\mathbf {H} _{0r}&={\cfrac {\kappa _{1}}{\omega \mu _{1}}}~(-{\mathcal {E}}_{r}~\cos \theta _{r}~\mathbf {e} _{1}+{\mathcal {E}}_{r}~\sin \theta _{r}~\mathbf {e} _{3})\\\mathbf {H} _{0t}&={\cfrac {\kappa _{2}}{\omega \mu _{2}}}~({\mathcal {E}}_{t}~\cos \theta _{t}~\mathbf {e} _{1}+{\mathcal {E}}_{t}~\sin \theta _{t}~\mathbf {e} _{3})~.\end{aligned}}}
Continuity of tangential components of
E
{\displaystyle \mathbf {E} }
at the interface gives
(15)
E
i
+
E
r
=
E
t
.
{\displaystyle {\text{(15)}}\qquad {{\mathcal {E}}_{i}+{\mathcal {E}}_{r}={\mathcal {E}}_{t}~.}}
The tangential components of
H
0
{\displaystyle \mathbf {H} _{0}}
at the interface are given by
H
0
i
×
e
3
=
−
κ
1
ω
μ
1
E
i
cos
θ
i
e
2
H
0
r
×
e
3
=
κ
1
ω
μ
1
E
r
cos
θ
r
e
2
H
0
t
×
e
3
=
−
κ
2
ω
μ
2
E
t
cos
θ
t
e
2
.
{\displaystyle {\begin{aligned}\mathbf {H} _{0i}\times \mathbf {e} _{3}&=-{\cfrac {\kappa _{1}}{\omega \mu _{1}}}~{\mathcal {E}}_{i}~\cos \theta _{i}~\mathbf {e} _{2}\\\mathbf {H} _{0r}\times \mathbf {e} _{3}&={\cfrac {\kappa _{1}}{\omega \mu _{1}}}~{\mathcal {E}}_{r}~\cos \theta _{r}~\mathbf {e} _{2}\\\mathbf {H} _{0t}\times \mathbf {e} _{3}&=-{\cfrac {\kappa _{2}}{\omega \mu _{2}}}~{\mathcal {E}}_{t}~\cos \theta _{t}~\mathbf {e} _{2}~.\end{aligned}}}
From continuity at the interface and using the arbitrariness of
x
1
{\displaystyle x_{1}}
, we
get (from the above equations with
θ
i
=
θ
r
{\displaystyle \theta _{i}=\theta _{r}}
)
κ
1
ω
μ
1
(
E
i
−
E
r
)
cos
θ
i
=
κ
2
ω
μ
1
E
t
cos
θ
t
.
{\displaystyle {\cfrac {\kappa _{1}}{\omega \mu _{1}}}~({\mathcal {E}}_{i}-{\mathcal {E}}_{r})~\cos \theta _{i}={\cfrac {\kappa _{2}}{\omega \mu _{1}}}~{\mathcal {E}}_{t}~\cos \theta _{t}~.}
Using the relation
κ
=
n
ω
/
c
0
{\displaystyle \kappa =n~\omega /c_{0}}
, we get
(16)
n
1
μ
1
(
E
i
−
E
r
)
cos
θ
i
=
n
2
μ
2
E
t
cos
θ
t
.
{\displaystyle {\text{(16)}}\qquad {{\cfrac {n_{1}}{\mu _{1}}}~({\mathcal {E}}_{i}-{\mathcal {E}}_{r})~\cos \theta _{i}={\cfrac {n_{2}}{\mu _{2}}}~{\mathcal {E}}_{t}~\cos \theta _{t}~.}}
From equations (15) and (16), we get
(17)
E
r
E
i
=
n
1
μ
1
cos
θ
i
−
n
2
μ
2
cos
θ
t
n
1
μ
1
cos
θ
i
+
n
2
μ
2
cos
θ
t
{\displaystyle {\text{(17)}}\qquad {{\cfrac {{\mathcal {E}}_{r}}{{\mathcal {E}}_{i}}}={\cfrac {{\cfrac {n_{1}}{\mu _{1}}}~\cos \theta _{i}-{\cfrac {n_{2}}{\mu _{2}}}~\cos \theta _{t}}{{\cfrac {n_{1}}{\mu _{1}}}~\cos \theta _{i}+{\cfrac {n_{2}}{\mu _{2}}}~\cos \theta _{t}}}}}
and
(18)
E
t
E
i
=
2
n
1
μ
1
cos
θ
i
n
1
μ
1
cos
θ
i
+
n
2
μ
2
cos
θ
t
.
{\displaystyle {\text{(18)}}\qquad {{\cfrac {{\mathcal {E}}_{t}}{{\mathcal {E}}_{i}}}={\cfrac {2~{\cfrac {n_{1}}{\mu _{1}}}~\cos \theta _{i}}{{\cfrac {n_{1}}{\mu _{1}}}~\cos \theta _{i}+{\cfrac {n_{2}}{\mu _{2}}}~\cos \theta _{t}}}~.}}
Equations (15), (16), (17), and (18) are the Fresnel equations a wave polarized with the
E
i
{\displaystyle \mathbf {E} _{i}}
vector perpendicular to the plane of incidence. We may also
write the last two equations as
(19)
E
r
E
i
=
n
1
μ
r
1
cos
θ
i
−
n
2
μ
r
2
cos
θ
t
n
1
μ
r
1
cos
θ
i
+
n
2
μ
r
2
cos
θ
t
;
E
t
E
i
=
2
n
1
μ
r
1
cos
θ
i
n
1
μ
r
1
cos
θ
i
+
n
2
μ
r
2
cos
θ
t
.
{\displaystyle {\text{(19)}}\qquad {\cfrac {{\mathcal {E}}_{r}}{{\mathcal {E}}_{i}}}={\cfrac {{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}-{\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{t}}{{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}+{\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{t}}}~;~~{\cfrac {{\mathcal {E}}_{t}}{{\mathcal {E}}_{i}}}={\cfrac {2~{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}}{{\cfrac {n_{1}}{\mu _{r1}}}~\cos \theta _{i}+{\cfrac {n_{2}}{\mu _{r2}}}~\cos \theta _{t}}}~.}
From the above equations, there is no reflected wave only if
tan
θ
i
=
tan
θ
t
μ
1
μ
2
.
{\displaystyle \tan \theta _{i}=\tan \theta _{t}~{\cfrac {\mu _{1}}{\mu _{2}}}~.}
This is only possible if there is no interface. Therefore, in the
presence of a interface, there is always a reflected wave for this situation.