Vector space/Basis/Exchange theorem/Fact/Proof

Proof

We do induction over , the number of the vectors in the family. For , there is nothing to show. Suppose now that the statement is already proven for , and let linearly independent vectors

be given. By the induction hypothesis, applied to the vectors (which are also linearly independent)

there exists a subset such that the family

is a basis of . We want to apply the basis exchange lemma to this basis. As it is a basis, we can write

Suppose that all coefficients . Then we get a contradiction to the linear independence of , . Hence, there exists some with . We put . Then is a subset of with elements. By the basis exchange lemma, we can replace the basis vector by , and we obtain the new basis

  The final statement follows, since we have a subset with elements inside a set with elements.