University of Florida/Eml4507/s13.team4ever.R4

Problem R4.1

edit

On my honor, I have neither given nor recieved unauthorized aid in doing this assignment.

Description

edit
We are to find the eigenvector  corresponding to the eigenvalue  for the spring-mass-damper system on p.53-13.  We are then to plot and comment on this mode shape.  Finally we are to verify that this eigenvector is orthogonal to the one obtained in the example before.

Given:

edit

We are given from Fead.s13.sec53b.djvu that

and


Solution:

edit

So we need to find an eigenvector such that


Augmenting the right hand matrix onto the left hand matrix and putting this in row reduced echelon form we obtain,


we may set and obtain:


We will now show that these two eigenvectors are orthogonal by showing that the dot product between the two is zero.


Therefore, they are orthogonal.

The corresponding eigenvalue for this eigenvector isn't the smallest possible eigenvalue which means this isn't a fundamental mode.

The modal shape is plotted below.


Problem R.4.2

edit

Honor Pledge:

edit

On my honor I have neither given nor received unauthorized aid in doing this problem.

Problem Description:

edit

We are tasked with finding the eigenvector corresponding to the eigenvalue for the same system as described in R4.2. We must also plot the mode shapes and compare with those from R4.2. Lastly we are tasked with creating an animation for each mode shape.

Given:

edit

from Fead.s13.sec53b(4).djvu:

and, from R4.1

Solution:

edit

So,

Combining and reducing to row echelon form.

we may set and obtain:


Proving that they are orthogonal by ensuring the dot product between the two is zero:


The eigenvalue corresponding to this eigenvector is the smallest possible and there this must be a fundamental mode.

Mode shape plotted in picture below.
Picture is adapted from Fead.s13.sec53b(4).djvu p.53-16.



Problem R4.3: Post processing of member forces and reactions p.11-3 (fead.f08.mtgs.[10-18])

edit

On our honor, we did this assignment on our own, without looking at the solutions in previous semesters or other online solutions.

Given: Two member system with initial force P

edit

Consider a 2 member system with an applied force. The displacements are assumed to be known. This allows for the post processing for the reactions both globally and for the members.

 
Figure 1: Two member system (fig.JPG)

Find:

edit

1.Post process for member forces and reactions using method 1 (square root of sum of squares)

edit

2.Post process for member forces and reactions using method 2 (transformation matrix)

edit

Solution: Post process for member forces and reactions

edit

Both methods first require the displacements which are assumed as given since we are post processing for the member forces.

This is the general stiffness matrix for a two bar system as given.


 


The first two columns and the last two columns are struck out due to fixed positions of nodes 1 and 3. Since we are post processing for the reactions forces and member forces, we know the displacements at node 2. These displacements are used along with the global stiffness matrix to solve for the reaction forces. The reaction forces will be parallel to the members since the truss elements are two force members.

 

Method 1 (square root of sum of squares)

edit

Once the x and y components of the global forces on node 1 have been found, the square root of the sum of squares of the component can be used to find the member force magnitude. This is the member force since we are observing a two force member.

 

 

Method 2 (transformation matrix)

edit

The local items are denoted by the overhead bar for each term. The global items do not have this accent.

This first step describes how you obtain the local displacements from the global system.

 

 

 

 


Discussion of Methods

edit

As you could see the method 1 is most simple for easy systems. However, getting into larger systems, the second method will be more useful for automating with an application such as Matlab. The systematic approach of method two allows for large sets of data to be systematically crunched based on the global system matrix. It can be seen that the computational efficiency could vary based on the application. I would choose method two for most approaches since it is more generally applied to large systems.





Problem 4.4 Eigenvalues and Eigenvectors for Mode Shape

edit

On my honor, I have neither given nor recieved unauthorized aid in doing this assignment.

Problem Statement

edit

Assume the mass density to be 5,000  . Contruct the diagonal mass matrix and find the eigenpairs. With this, design a matlab and calfem program to determine the deformation shape.

Matlab Solution

edit

Set up K matrix

edit

k = 100000000000*0.0001/0.3;

K = zeros(28,28);

K(1,1)=k*1;K(3,3)=k*1;

K(3,3)=K(3,3)+k*1;K(5,5)=K(5,5)+k*1;

K(5,5)=K(5,5)+k*1;K(7,7)=K(7,7)+k*1;

K(7,7)=K(7,7)+k*1;K(9,9)=K(9,9)+k*1;


K(11,11)=K(11,11)+k*1;K(9,9)=K(9,9)+k*1;

K(11,11)=K(11,11)+k*1;K(13,13)=K(13,13)+k*1;

K(15,15)=K(15,15)+k*1;K(17,17)=K(17,17)+k*1;

K(19,19)=K(19,19)+k*1;K(17,17)=K(17,17)+k*1;

K(19,19)=K(19,19)+k*1;K(21,21)=K(21,21)+k*1;

K(23,23)=K(23,23)+k*1;K(21,21)=K(21,21)+k*1;

K(23,23)=K(23,23)+k*1;K(25,25)=K(25,25)+k*1;

K(27,27)=K(27,27)+k*1;K(25,25)=K(25,25)+k*1;

K(2,2)=K(2,2)+k*1;K(16,16)=K(16,16)+k*1;


K(4,4)=K(4,4)+k*1;K(18,18)=K(18,18)+k*1;

K(6,6)=K(6,6)+k*1;K(20,20)=K(20,20)+k*1;

K(8,8)=K(8,8)+k*1;K(22,22)=K(22,22)+k*1;

K(10,10)=K(10,10)+k*1;K(24,24)=K(24,24)+k*1;

K(12,12)=K(12,12)+k*1;K(26,26)=K(26,26)+k*1;

K(14,14)=K(14,14)+k*1;K(28,28)=K(28,28)+k*1;

l = cos(45)^2;

kl = 100000000000*0.0001/(0.3*sqrt(2));

for i = 0:5

    j = 1+i*2;
     K(j,j)=K(j,j)+l*kl;K(j,j+1)=K(j,j+1)+l*kl;K(j+1,j)=K(j+1,j)+l*kl;K(j+1,j+1)=K(j+1,j+1)+l*kl;
    K(j+16,j)=K(j+16,j)+l*kl;K(j+16,j+1)=K(j+16,j+1)+l*kl;K(j+17,j)=K(j+17,j)+l*kl;K(j+17,j+1)=K(j+17,j+1)+l*kl;
    K(j,j+16)=K(j,j+16)+l*kl;K(j,j+17)=K(j,j+17)+l*kl;K(j+1,j+16)=K(j+1,j+16)+l*kl;K(j+1,j+17)=K(j+1,j+17)+l*kl;
    K(j+16,j+16)=K(j+16,j+16)+l*kl;K(j+16,j+17)=K(j+16,j+17)+l*kl;K(j+17,j+16)=K(j+17,j+16)+l*kl;K(j+17,j+17)=K(j+17,j+17)+l*kl;

end

Set up the M matrix

edit

M = zeros(28,28);

M(i,i)=0.3*0.0001*5000;

for i = 1:28

    M(i,i)=0.3*0.0001*5000;

end

for i = 1:12

    M(i,i)=0.3*0.0001*5000*sqrt(2)+M(i,i);
    M(i+16,i+16)=0.3*0.0001*5000*sqrt(2)+M(i+16,i+16);

end

for i = 3:12

    M(i,i) = M(i,i)+0.3*0.0001*5000/2;
    M(i+14,i+14) = M(i+14,i+14)+0.3*0.0001*5000/2;

end

b = zeros(28,1);

Determine the Eigenvalues and Eigenvectors

edit

[L,X] = eigen(K,M)

L =

  1.0e+08 *
   0.7625
   0.7625
   0.7625
   0.7625
   0.7984
   0.7984
   0.9205
   0.9205
   0.9578
   0.9578
   0.9578
   0.9578
   1.2259
   1.2259
   1.5251
   1.5251
   1.5251
   1.5251
   1.8406
   1.8406
   1.9251
   1.9251
   1.9251
   1.9251
   2.2222
   2.2222
   2.2222
   2.2222


X =

 Columns 1 through 5
   0.0000    0.0000   -0.0000   -0.0000   -0.0000
  -0.0000    0.0000   -0.0000   -0.0000   -0.0000
   0.0000   -0.0000    0.0000    0.0000    0.0000
  -0.8946   -0.5809    0.0362   -0.0684   -0.0000
   0.0000    0.0000   -0.0000   -0.0000   -0.0000
   0.0759   -0.2460   -0.1249    1.0305    0.0000
   0.0000    0.0000    0.0000   -0.0000    0.0000
   0.5811   -0.8619    0.0773   -0.2392   -0.0000
  -0.0000    0.0000    0.0000    0.0000    0.0000
   0.0029   -0.0537   -1.0587   -0.1414   -0.0000
   0.0000   -0.0000   -0.0000   -0.0000    0.0679
  -0.0000    0.0000    0.0000    0.0000   -1.3744
  -0.0000   -0.0000    0.0000   -0.0000   -0.0000
  -0.0000   -0.0000    0.0000   -0.0000   -0.0000
   0.0000   -0.0000    0.0000    0.0000   -0.0000
   0.0000   -0.0000    0.0000    0.0000    0.0000
  -0.0000    0.0000   -0.0000    0.0000   -0.0000
   0.0000   -0.0000    0.0000    0.0000    0.0000
  -0.0000   -0.0000   -0.0000    0.0000    0.0000
   0.8946    0.5809   -0.0362    0.0684   -0.0000
  -0.0000   -0.0000   -0.0000   -0.0000   -0.0000
  -0.0759    0.2460    0.1249   -1.0305   -0.0000
   0.0000   -0.0000    0.0000   -0.0000    0.0000
  -0.5811    0.8619   -0.0773    0.2392    0.0000
   0.0000   -0.0000   -0.0000   -0.0000    0.0000
  -0.0029    0.0537    1.0587    0.1414    0.0000
   0.0000   -0.0000   -0.0000   -0.0000    0.4876
   0.0000   -0.0000   -0.0000   -0.0000    0.4876
 Columns 6 through 10
   0.4876   -1.1750   -0.0000    0.0000   -0.0000
   0.4876    1.1750   -0.0000    0.0000    0.0000
  -0.0000    0.0000    0.0000   -0.0348   -0.3197
   0.0000   -0.0000   -0.0000    0.1011    0.9291
   0.0000    0.0000   -0.0000    0.0386    0.0973
   0.0000   -0.0000    0.0000   -0.1121   -0.2827
  -0.0000    0.0000    0.0000   -0.3438    0.0468
   0.0000    0.0000   -0.0000    0.9991   -0.1361
   0.0000    0.0000    0.0000   -0.0144   -0.0850
  -0.0000   -0.0000   -0.0000    0.0420    0.2471
  -0.0000    0.0000    0.0000    0.0000    0.0000
   0.0000   -0.0000   -0.0000   -0.0000   -0.0000
   0.0000   -0.0000   -0.0000   -0.0000    0.0000
   0.0000   -0.0000    0.0000   -0.0000   -0.0000
   0.0000    0.0000   -0.0000    0.0000    0.0000
  -0.0000   -0.0000   -0.0000   -0.0000   -0.0000
   0.0679   -0.0000    0.0000   -0.0000   -0.0000
  -1.3744   -0.0000    0.0000   -0.0000   -0.0000
   0.0000    0.0000    0.0000   -0.0348   -0.3197
  -0.0000   -0.0000   -0.0000    0.1011    0.9291
   0.0000    0.0000   -0.0000    0.0386    0.0973
  -0.0000   -0.0000    0.0000   -0.1121   -0.2827
   0.0000   -0.0000    0.0000   -0.3438    0.0468
  -0.0000   -0.0000   -0.0000    0.9991   -0.1361
   0.0000    0.0000    0.0000   -0.0144   -0.0850
   0.0000   -0.0000   -0.0000    0.0420    0.2471
  -0.0000   -0.0000    1.1750    0.0000    0.0000
   0.0000   -0.0000   -1.1750   -0.0000   -0.0000
 Columns 11 through 15
  -0.0000   -0.0000   -0.0000   -0.9256    0.0000
   0.0000    0.0000   -0.0000   -0.9256    0.0000
  -0.0818   -0.1048   -0.0000   -0.0000    0.8937
   0.2379    0.3045    0.0000   -0.0000   -0.0000
   0.0270   -0.3307   -0.0000    0.0000   -0.5386
  -0.0786    0.9613    0.0000   -0.0000   -0.0000
  -0.0028   -0.0266   -0.0000    0.0000    0.2345
   0.0083    0.0772    0.0000    0.0000   -0.0000
   0.3371    0.0009   -0.0000    0.0000    0.0000
  -0.9798   -0.0025    0.0000   -0.0000   -0.0000
  -0.0000   -0.0000   -0.7827   -0.0000    0.0000
   0.0000    0.0000    0.5054    0.0000    0.0000
   0.0000    0.0000    0.0000    0.0000   -0.0000
  -0.0000    0.0000   -0.0000   -0.0000    0.0000
   0.0000   -0.0000   -0.0000   -0.0000   -0.0000
  -0.0000   -0.0000   -0.0000   -0.0000    0.0000
  -0.0000    0.0000    0.0000    0.7827    0.0000
  -0.0000   -0.0000   -0.0000   -0.5054   -0.0000
  -0.0818   -0.1048    0.0000   -0.0000   -0.8937
   0.2379    0.3045    0.0000    0.0000   -0.0000
   0.0270   -0.3307    0.0000   -0.0000    0.5386
  -0.0786    0.9613   -0.0000   -0.0000   -0.0000
  -0.0028   -0.0266    0.0000   -0.0000   -0.2345
   0.0083    0.0772    0.0000    0.0000   -0.0000
   0.3371    0.0009    0.0000    0.0000    0.0000
  -0.9798   -0.0025    0.0000    0.0000    0.0000
  -0.0000   -0.0000    0.9256    0.0000   -0.0000
   0.0000    0.0000    0.9256   -0.0000         0
 Columns 16 through 20
   0.0000   -0.0000    0.0000   -0.5350   -0.0000
   0.0000   -0.0000   -0.0000   -0.5350   -0.0000
   0.1161    0.0021   -0.5759    0.0000    0.0000
   0.0000   -0.0000   -0.0000    0.0000    0.0000
   0.5802   -0.0106   -0.7189   -0.0000    0.0000
   0.0000    0.0000   -0.0000   -0.0000    0.0000
   0.8903   -0.0322    0.5433   -0.0000   -0.0000
   0.0000   -0.0000    0.0000   -0.0000   -0.0000
   0.0324    1.0690    0.0104    0.0000   -0.0000
   0.0000    0.0000   -0.0000   -0.0000   -0.0000
  -0.0000   -0.0000   -0.0000    0.0000    1.2924
  -0.0000   -0.0000   -0.0000   -0.0000    0.3783
   0.0000    0.0000   -0.0000   -0.0000   -0.0000
  -0.0000   -0.0000    0.0000   -0.0000   -0.0000
   0.0000    0.0000   -0.0000   -0.0000   -0.0000
   0.0000    0.0000   -0.0000   -0.0000   -0.0000
  -0.0000    0.0000   -0.0000   -1.2924   -0.0000
   0.0000   -0.0000   -0.0000   -0.3783   -0.0000
  -0.1161   -0.0021    0.5759    0.0000    0.0000
  -0.0000    0.0000   -0.0000    0.0000    0.0000
  -0.5802    0.0106    0.7189   -0.0000    0.0000
   0.0000   -0.0000   -0.0000   -0.0000    0.0000
  -0.8903    0.0322   -0.5433   -0.0000   -0.0000
   0.0000   -0.0000    0.0000    0.0000    0.0000
  -0.0324   -1.0690   -0.0104    0.0000    0.0000
  -0.0000   -0.0000    0.0000   -0.0000   -0.0000
   0.0000    0.0000    0.0000    0.0000    0.5350
   0.0000    0.0000    0.0000   -0.0000    0.5350
 Columns 21 through 25
  -0.0000   -0.0000    0.0000    0.0000    0.0000
  -0.0000   -0.0000    0.0000    0.0000    0.0000
  -0.8943   -0.4535    0.0330    0.1273   -0.0000
  -0.3077   -0.1560    0.0113    0.0438   -0.0000
  -0.3734    0.8333   -0.1855    0.3932    0.0000
  -0.1285    0.2867   -0.0638    0.1353    0.0000
  -0.2824    0.2924   -0.0745   -0.9230    0.0000
  -0.0972    0.1006   -0.0256   -0.3176    0.0000
   0.0614   -0.1931   -0.9908    0.0000   -0.0000
   0.0211   -0.0664   -0.3409    0.0000    0.0000
   0.0000   -0.0000   -0.0000    0.0000   -0.0000
   0.0000   -0.0000   -0.0000    0.0000   -0.0000
   0.0000    0.0000   -0.0000   -0.0000   -0.5675
   0.0000    0.0000   -0.0000    0.0000   -0.3423
   0.0000    0.0000   -0.0000   -0.0000   -2.4917
  -0.0000   -0.0000    0.0000    0.0000   -0.1374
  -0.0000   -0.0000    0.0000    0.0000    0.0000
  -0.0000   -0.0000    0.0000    0.0000   -0.0000
  -0.8943   -0.4535    0.0330    0.1273    0.0000
  -0.3077   -0.1560    0.0113    0.0438   -0.0000
  -0.3734    0.8333   -0.1855    0.3932   -0.0000
  -0.1285    0.2867   -0.0638    0.1353    0.0000
  -0.2824    0.2924   -0.0745   -0.9230    0.0000
  -0.0972    0.1006   -0.0256   -0.3176   -0.0000
   0.0614   -0.1931   -0.9908    0.0000    0.0000
   0.0211   -0.0664   -0.3409    0.0000    0.0000
  -0.0000    0.0000    0.0000   -0.0000    0.0000
   0.0000   -0.0000   -0.0000         0         0
 Columns 26 through 28
  -0.0000   -0.0000    0.0000
  -0.0000    0.0000    0.0000
  -0.0000   -0.0000   -0.0000
  -0.0000   -0.0000    0.0000
   0.0000    0.0000    0.0000
  -0.0000   -0.0000    0.0000
   0.0000   -0.0000    0.0000
   0.0000   -0.0000    0.0000
   0.0000    0.0000    0.0000
  -0.0000   -0.0000   -0.0000
   0.0000    0.0000    0.0000
   0.0000    0.0000    0.0000
  -0.9357    2.3366   -0.0972
   2.3783    0.8522   -0.4088
  -0.1325   -0.6608   -0.0622
   0.3428    0.2098    2.5468
   0.0000   -0.0000   -0.0000
  -0.0000   -0.0000   -0.0000
  -0.0000    0.0000    0.0000
   0.0000   -0.0000   -0.0000
  -0.0000   -0.0000   -0.0000
  -0.0000   -0.0000    0.0000
   0.0000   -0.0000    0.0000
   0.0000    0.0000    0.0000
  -0.0000   -0.0000   -0.0000
  -0.0000   -0.0000   -0.0000
  -0.0000   -0.0000   -0.0000
        0         0         0

Set up the Origional Shape

edit

L=0.3;

for i=1:7

    pos(:,i) = [(i-1)*L;0];
    pos(:,i+7) = [(i-1)*L;L];

end

for i = 1:14,

    x(i) = pos(1,i);
    y(i) = pos(2,i);

end

for i = 1:6

    conn(1,i)= i;
    conn(2,i)= i+1;

end

for i = 7:12

    conn(1,i) = i+1;
    conn(2,i) = i+2;

end

for i = 13:19

    conn(1,i) = i-12;
    conn(2,i) = i-5;

end

for i = 20:25;

    conn(1,i) = i-19;
    conn(2,i) = i-11;

end

figure(1)

for i = 1:25

    node_1 = conn(1,i);
    node_2 = conn(2,i);
    xx = [x(node_1),x(node_2)];
    yy = [y(node_1),y(node_2)];
    plot(xx,yy)
    hold on

end

Add in the Eigenvectors

edit

for i=1:14

    j = i*2;
    y(i) = y(i)+X(j,1);

end

for i=1:14

    j = i*2-1;
    x(i) = x(i)+X(j,1);

end

for i = 1:25

    node_1 = conn(1,i);
    node_2 = conn(2,i);
    xx = [x(node_1),x(node_2)];
    yy = [y(node_1),y(node_2)];
    plot(xx,yy)

end

Final

edit

 

CALFEM Solution

edit
function R4p4

p = 5000;  %kg/m3
A = 0.01;  %m2
L = 0.3;   %m

h = p*A*L;
v = h;
d = (sqrt((L^2)+(L^2)))*A*p;

m = [(h/2)+(d/2)+(v/2);(h/2)+(d/2)+(v/2);
    (h/2)+(v/2);(h/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
    (h/2)+(v/2);(h/2)+(v/2);
    (h/2)+(d/2)+(v/2);(h/2)+(d/2)+(v/2)];

M = diag(m);

Coord = [0 0;0 0.3;0.3 0;0.3 0.3;0.6 0;
    0.6 0.3;0.9 0;0.9 0.3;1.2 0;1.2 0.3;
    1.5 0;1.5 0.3;1.8 0;1.8 0.3];
Dof = [1 2;3 4;5 6;7 8;9 10;1 12;13 14;15 16;
    17 18;19 20;21 22;23 24;25 26;27 28];
Edof = [1 1 2 5 6;2 5 6 9 10;3 9 10 13 14;4 13 14 17 18;5 17 18 21 22;
    6 21 22 25 26;7 3 4 7 8;8 7 8 11 12;9 11 12 15 16;10 15 16 19 20;
    11 19 20 23 24;12 23 24 27 28;13 1 2 3 4;14 5 6 7 8;15 9 10 11 12;
    16 13 14 15 16;17 17 18 19 20;18 21 22 23 24;19 25 26 27 28;20 1 2 7 8;
    21 5 6 11 12;22 9 10 15 16;23 13 14 19 20;24 17 18 23 24;25 21 22 27 28];

[Ex,Ey] = coordxtr(Edof,Coord,Dof,2);
K = zeros(28);
ep = [100000000000 0.01];

for i=1:25
    Ke = bar2e(Ex(i,:),Ey(i,:),ep);
    K = assem(Edof(i,:),K,Ke);
end

[L,X] = eigen(K,M);

eigval = L;
eigvect = X;

Three lowest eigenvalues and eigenvectors

j1eig = eigval(1)
j1eigvx = eigvect(:,1)
j1eigvy = eigvect(:,2)

j2eig = eigval(2)
j2eigvx = eigvect(:,3)
j2eigvy = eigvect(:,4)

j3eig = eigval(3)
j3eigvx = eigvect(:,5)
j3eigvy = eigvect(:,6)


j1eig =
 -4.1672e-08

j1eigvx =
  -0.0018
   0.0853
   0.0136
   0.0853
  -0.0018
   0.0699
   0.0136
   0.0699
  -0.0018
   0.0545
   0.0136
   0.0545
  -0.0018
   0.0391
   0.0136
   0.0391
  -0.0018
   0.0238
   0.0136
   0.0238
  -0.0018
   0.0084
   0.0136
   0.0084
  -0.0018
  -0.0070
   0.0136
  -0.0070

j1eigvy =
  -0.0485
   0.0068
  -0.0488
   0.0068
  -0.0485
   0.0071
  -0.0488
   0.0071
  -0.0485
   0.0074
  -0.0488
   0.0074
  -0.0485
   0.0077
  -0.0488
   0.0077
  -0.0485
   0.0080
  -0.0488
   0.0080
  -0.0485
   0.0083
  -0.0488
   0.0083
  -0.0485
   0.0086
  -0.0488
   0.0086

j2eig =
 -1.0740e-08

j2eigvx =
   0.0155
  -0.0334
  -0.0053
  -0.0334
   0.0155
  -0.0127
  -0.0053
  -0.0127
   0.0155
   0.0081
  -0.0053
   0.0081
   0.0155
   0.0289
  -0.0053
   0.0289
   0.0155
   0.0496
  -0.0053
   0.0496
   0.0155
   0.0704
  -0.0053
   0.0704
   0.0155
   0.0912
  -0.0053
   0.0912

j2eigvy =
  -0.0242
   0.0747
   0.0200
   0.0761
  -0.0197
   0.0156
   0.0197
   0.0202
  -0.0092
  -0.0374
   0.0148
  -0.0335
   0.0040
  -0.0572
   0.0040
  -0.0572
   0.0148
  -0.0335
  -0.0092
  -0.0374
   0.0197
   0.0202
  -0.0197
   0.0156
   0.0200
   0.0761
  -0.0242
   0.0747

j3eig =
  1.2133e-07

j3eigvx =
   0.0206
  -0.0518
  -0.0370
  -0.0552
   0.0097
   0.0333
  -0.0347
   0.0284
  -0.0031
   0.0552
  -0.0190
   0.0633
   0.0002
  -0.0083
  -0.0002
   0.0083
   0.0190
  -0.0633
   0.0031
  -0.0552
   0.0347
  -0.0284
  -0.0097
  -0.0333
   0.0370
   0.0552
  -0.0206
   0.0518

j3eigvy =
   0.0616
  -0.0146
   0.0727
  -0.0164
   0.0453
   0.0010
   0.0647
  -0.0047
   0.0125
   0.0180
   0.0453
   0.0165
  -0.0204
  -0.0017
   0.0204
   0.0017
  -0.0453
  -0.0165
  -0.0125
  -0.0180
  -0.0647
   0.0047
  -0.0453
  -0.0010
  -0.0727
   0.0164
  -0.0616
   0.0146

Plotting the three lowest mode shapes

for j=1:3
    figure
    plot(eigvect(:,j));
    title(['Mode Shape ',num2str(j)])
end

 

For animation using smartgifcreator,

for j=1:28
    clear plot
    ed = extract(Edof,X(:,j));
    P = eldisp2(Ex,Ey,ed,plotpar,scale);
    W(j) = getframe;
    drawnow
    pause
end

 







Table of Assignments

edit
Problem Assignments
Problem # Solved&Typed by Reviewed by
1 David Bonner, Bryan Tobin All
2 Bryan Tobin, David Bonner All
3 Vernon Babich, Tyler Wulterkens All
4 Tyler Wulterkens, Chad Colocar, Vernon Babich, David Bonner All