Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Trigonometry/Identities/Table
Language
Watch
Edit
<
Trigonometry
|
Identities
Contents
1
Reciprocal
2
Quotient
3
Pythagorean
4
Negative-angle
5
Sum and difference
6
Cofunction
7
Double-angle
8
Half-angle
9
See also
Reciprocal
edit
csc
θ
=
1
sin
θ
{\displaystyle \csc \theta ={\frac {1}{\sin \theta }}}
sec
θ
=
1
cos
θ
{\displaystyle \sec \theta ={\frac {1}{\cos \theta }}}
cot
θ
=
1
tan
θ
{\displaystyle \cot \theta ={\frac {1}{\tan \theta }}}
Quotient
edit
tan
θ
=
sin
θ
cos
θ
{\displaystyle \tan \theta ={\frac {\sin \theta }{\cos \theta }}}
cot
θ
=
cos
θ
sin
θ
{\displaystyle \cot \theta ={\frac {\cos \theta }{\sin \theta }}}
Pythagorean
edit
tan
2
θ
+
1
=
sec
2
θ
{\displaystyle \tan ^{2}\theta +1=\sec ^{2}\theta }
1
+
cot
2
θ
=
csc
2
θ
{\displaystyle 1+\cot ^{2}\theta =\csc ^{2}\theta }
sin
2
θ
+
cos
2
θ
=
1
{\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1}
Negative-angle
edit
sin
(
−
θ
)
=
−
sin
θ
{\displaystyle \sin(-\theta )=-\sin \theta }
cos
(
−
θ
)
=
cos
θ
{\displaystyle \cos(-\theta )=\cos \theta }
tan
(
−
θ
)
=
−
tan
θ
{\displaystyle \tan(-\theta )=-\tan \theta }
Sum and difference
edit
sin
(
A
+
B
)
=
sin
A
cos
B
+
cos
A
sin
B
{\displaystyle \sin(A+B)=\sin A\cos B+\cos A\sin B}
sin
(
A
−
B
)
=
sin
A
cos
B
−
cos
A
sin
B
{\displaystyle \sin(A-B)=\sin A\cos B-\cos A\sin B}
tan
(
A
+
B
)
=
tan
A
+
tan
B
1
−
tan
A
tan
B
{\displaystyle \tan(A+B)={\frac {\tan A+\tan B}{1-\tan A\tan B}}}
cos
(
A
+
B
)
=
cos
A
cos
B
−
sin
A
sin
B
{\displaystyle \cos(A+B)=\cos A\cos B-\sin A\sin B}
cos
(
A
−
B
)
=
cos
A
cos
B
+
sin
A
sin
B
{\displaystyle \cos(A-B)=\cos A\cos B+\sin A\sin B}
tan
(
A
−
B
)
=
tan
A
−
tan
B
1
+
tan
A
tan
B
{\displaystyle \tan(A-B)={\frac {\tan A-\tan B}{1+\tan A\tan B}}}
Cofunction
edit
cos
(
90
o
−
θ
)
=
sin
θ
{\displaystyle \cos(90^{o}-\theta )=\sin \theta }
sec
(
90
o
−
θ
)
=
csc
θ
{\displaystyle \sec(90^{o}-\theta )=\csc \theta }
cot
(
90
o
−
θ
)
=
tan
θ
{\displaystyle \cot(90^{o}-\theta )=\tan \theta }
sin
(
90
o
−
θ
)
=
cos
θ
{\displaystyle \sin(90^{o}-\theta )=\cos \theta }
csc
(
90
o
−
θ
)
=
sec
θ
{\displaystyle \csc(90^{o}-\theta )=\sec \theta }
tan
(
90
o
−
θ
)
=
cot
θ
{\displaystyle \tan(90^{o}-\theta )=\cot \theta }
Double-angle
edit
cos
2
A
=
cos
2
A
−
sin
2
A
{\displaystyle \cos 2A=\cos ^{2}A-\sin ^{2}A}
cos
2
A
=
2
cos
2
A
−
1
{\displaystyle \cos 2A=2\cos ^{2}A-1}
cos
2
A
=
1
−
2
sin
2
A
{\displaystyle \cos 2A=1-2\sin ^{2}A}
sin
2
A
=
2
sin
A
cos
A
{\displaystyle \sin 2A=2\sin A\cos A}
tan
2
A
=
2
tan
A
1
−
tan
2
A
{\displaystyle \tan 2A={\frac {2\tan A}{1-\tan ^{2}A}}}
Half-angle
edit
tan
A
2
=
±
1
−
cos
A
1
+
cos
A
{\displaystyle \tan {\frac {A}{2}}=\pm {\sqrt {\frac {1-\cos A}{1+\cos A}}}}
tan
A
2
=
sin
A
1
+
cos
A
{\displaystyle \tan {\frac {A}{2}}={\frac {\sin A}{1+\cos A}}}
tan
A
2
=
1
−
cos
A
sin
A
{\displaystyle \tan {\frac {A}{2}}={\frac {1-\cos A}{\sin A}}}
cos
A
2
=
±
1
+
cos
A
2
{\displaystyle \cos {\frac {A}{2}}=\pm {\sqrt {\frac {1+\cos A}{2}}}}
sin
A
2
=
±
1
−
cos
A
2
{\displaystyle \sin {\frac {A}{2}}=\pm {\sqrt {\frac {1-\cos A}{2}}}}
See also
edit
Trigonometry