Graph in 2 dimensions illustrating Rotation of Coordinate Axes. Point
P
{\displaystyle P}
has 2 names or definitions:
(
x
,
y
)
=
(
15
,
30
)
{\displaystyle (x,y)=(15,30)}
when defined relative to black arrows.
(
x
′
,
y
′
)
=
(
30
,
15
)
{\displaystyle (x',y')=(30,15)}
when defined relative to red arrows.
If
X
{\displaystyle X}
axis, line
O
X
{\displaystyle OX}
, is rotated through angle
θ
{\displaystyle \theta }
so that
X
{\displaystyle X}
axis of new system becomes
O
X
′
{\displaystyle OX'}
then:
Counter-clockwise rotation occurs when
θ
{\displaystyle \theta }
is positive.
Y
{\displaystyle Y}
axis of new system becomes
O
Y
′
.
{\displaystyle OY'.}
angle between
O
X
{\displaystyle OX}
and
O
X
′
{\displaystyle OX'}
is
θ
.
{\displaystyle \theta .}
angle between
O
Y
{\displaystyle OY}
and
O
Y
′
{\displaystyle OY'}
is
θ
.
{\displaystyle \theta .}
See diagram. By inspection:
Angle
T
P
Q
=
θ
{\displaystyle TPQ=\theta }
Q
R
=
S
T
=
x
′
sin
θ
{\displaystyle QR=ST=x'\sin \theta }
Q
T
=
R
S
=
y
′
sin
θ
{\displaystyle QT=RS=y'\sin \theta }
P
Q
=
y
′
cos
θ
{\displaystyle PQ=y'\cos \theta }
O
S
=
x
′
cos
θ
=
O
R
+
R
S
=
x
+
y
′
sin
θ
…
(
1
)
{\displaystyle OS=x'\cos \theta =OR+RS=x+y'\sin \theta \ \dots \ (1)}
P
R
=
y
=
P
Q
+
Q
R
=
y
′
cos
θ
+
x
′
sin
θ
…
(
2
)
{\displaystyle PR=y=PQ+QR=y'\cos \theta +x'\sin \theta \ \dots \ (2)}
From
(
1
)
,
x
=
x
′
cos
θ
−
y
′
sin
θ
…
(
3
)
{\displaystyle (1),\ x=x'\cos \theta -y'\sin \theta \ \dots \ (3)}
From
(
2
)
,
y
=
x
′
sin
θ
+
y
′
cos
θ
…
(
4
)
{\displaystyle (2),\ y=x'\sin \theta +y'\cos \theta \ \dots \ (4)}
From
(
3
)
{\displaystyle (3)}
and
(
4
)
:
{\displaystyle (4):}
x
′
=
x
cos
θ
+
y
sin
θ
…
(
5
)
{\displaystyle x'=x\cos \theta +y\sin \theta \ \dots \ (5)}
y
′
=
y
cos
θ
−
x
sin
θ
…
(
6
)
{\displaystyle y'=y\cos \theta -x\sin \theta \ \dots \ (6)}
Actual values:
Converting from
(
x
,
y
)
{\displaystyle (x,y)}
to
(
x
′
,
y
′
)
{\displaystyle (x',y')}
# Python code.
>>> c , s = cosθ , sinθ = 4 / 5 , 3 / 5 ; c , s
( 0.8 , 0.6 )
>>> x , y = 15 , 30
>>> x1 = x * c + y * s
>>> y1 = y * c - x * s
>>> x1 , y1
( 30.0 , 15.0 )
Process reversed:
# Python code.
>>> c , s = cosθ , sinθ = 4 / 5 , - 3 / 5 ; c , s
( 0.8 , - 0.6 )
>>> x , y = 30 , 15
>>> x1 = x * c + y * s
>>> y1 = y * c - x * s
>>> x1 , y1
( 15.0 , 30.0 )
Graph in 2 dimensions illustrating Rotation of Coordinate Axes applied to linear function. line1
has 2 equations: *
6
x
+
17
y
=
300
{\displaystyle 6x+17y=300}
relative to
O
X
,
O
Y
{\displaystyle OX,OY}
(black system). *
3
x
′
+
2
y
′
=
60
{\displaystyle 3x'+2y'=60}
relative to
O
X
′
,
O
Y
′
{\displaystyle OX',OY'}
(red system).
Let a line have equation:
a
x
+
b
y
+
d
=
0.
{\displaystyle ax+by+d=0.}
Let
c
=
cos
θ
;
s
=
sin
θ
.
{\displaystyle c=\cos \theta ;\ s=\sin \theta .}
After rotation, equation of line relative to
O
X
′
,
O
Y
′
{\displaystyle OX',OY'}
(red arrows) is:
a
(
x
′
c
−
y
′
s
)
+
b
(
x
′
s
+
y
′
c
)
+
d
{\displaystyle a(x'c-y's)+b(x's+y'c)+d}
=
a
x
′
c
−
a
y
′
s
+
b
x
′
s
+
b
y
′
c
+
d
{\displaystyle =ax'c-ay's+bx's+by'c+d}
=
a
x
′
c
+
b
x
′
s
+
b
y
′
c
−
a
y
′
s
+
d
{\displaystyle =ax'c+bx's+by'c-ay's+d}
=
x
′
a
c
+
x
′
b
s
+
y
′
b
c
−
y
′
a
s
+
d
{\displaystyle =x'ac+x'bs+y'bc-y'as+d}
=
x
′
(
a
c
+
b
s
)
+
y
′
(
b
c
−
a
s
)
+
d
{\displaystyle =x'(ac+bs)+y'(bc-as)+d}
=
A
x
′
+
B
y
′
+
d
=
0
…
(
1
)
{\displaystyle =Ax'+By'+d=0\ \dots \ (1)}
where:
A
=
a
cos
θ
+
b
sin
θ
;
{\displaystyle A=a\cos \theta +b\sin \theta ;}
B
=
b
cos
θ
−
a
sin
θ
.
{\displaystyle \ B=b\cos \theta -a\sin \theta .}
In the diagram line1
has equation
6
x
+
17
y
−
300
=
0
,
{\displaystyle 6x+17y-300=0,}
and
cos
θ
=
4
5
.
{\displaystyle \cos \theta ={\frac {4}{5}}.}
What is equation of line1
relative to
O
X
′
,
O
Y
′
{\displaystyle OX',OY'}
(red system)?
# python code.
>>> a , b , d = 6 , 17 , - 300
>>> c , s = cosθ , sinθ = 4 / 5 , 3 / 5 ; c , s
( 0.8 , 0.6 )
>>> A = a * c + b * s ; A
15.0
>>> B = b * c - a * s ; B
10.0
Equation of line1
relative to
O
X
′
,
O
Y
′
:
15
x
′
+
10
y
′
−
300
=
0
{\displaystyle OX',OY':\ 15x'+10y'-300=0}
or
3
x
′
+
2
y
′
=
60.
{\displaystyle 3x'+2y'=60.}
O
P
=
O
P
′
;
O
Q
=
O
Q
′
.
{\displaystyle OP=OP';\ OQ=OQ'.}
Triangles
O
P
Q
,
O
P
′
Q
′
{\displaystyle OPQ,OP'Q'}
are congruent.
Line1:
3
x
′
+
2
y
′
=
60
{\displaystyle 3x'+2y'=60}
has same position in red system as line2:
3
x
+
2
y
=
60
{\displaystyle 3x+2y=60}
in black system.
Graph in 2 dimensions illustrating Rotation of Coordinate Axes applied to quartic function. Position of black curve in red system is same as that of red curve in black system.
Let quartic function be defined as
y
=
f
(
x
)
=
1.5625
x
4
−
12.125
x
3
−
14.75
x
2
+
136.5
x
+
114
48
.
{\displaystyle y=f(x)={\frac {1.5625x^{4}-12.125x^{3}-14.75x^{2}+136.5x+114}{48}}.}
In diagram,
X
{\displaystyle X}
and
Y
{\displaystyle Y}
axes are rotated through angle
θ
{\displaystyle \theta }
to produce new system of coordinates
O
X
′
,
O
Y
′
{\displaystyle OX',OY'}
(red system.)
cos
θ
=
4
5
.
{\displaystyle \cos \theta ={\frac {4}{5}}.}
What is equation of
f
(
x
)
{\displaystyle f(x)}
relative to red system?
g
(
x
,
y
)
=
a
x
4
+
b
x
3
+
c
x
2
+
d
x
+
e
−
y
{\displaystyle g(x,y)=ax^{4}+bx^{3}+cx^{2}+dx+e-y}
After substituting appropriate values for
a
,
b
,
c
,
d
,
e
,
x
,
y
{\displaystyle a,b,c,d,e,x,y}
code supplied to application grapher is:
(0.0325520833333333) ((x(0.8) - y(0.6))^4)
+ (-0.252604166666667) ((x(0.8) - y(0.6))^3)
+ (-0.307291666666667) ((x(0.8) - y(0.6))^2)
+ (2.84375) ((x(0.8) - y(0.6)) )
+ (2.375)
- (x(0.6) + y(0.8)) = 0
Red curve in diagram has equation
g
(
x
,
y
)
=
0.
{\displaystyle g(x,y)=0.}
Graph in 2 dimensions illustrating Rotation of Coordinate Axes applied to ellipse.
Equation of ellipse in diagram is:
f
(
x
,
y
)
=
55
x
2
−
24
x
y
+
48
y
2
−
2496
=
0.
{\displaystyle f(x,y)=55x^{2}-24xy+48y^{2}-2496=0.}
What is equation of
f
(
x
,
y
)
{\displaystyle f(x,y)}
relative to minor and major axes (red system)?
The most general equation of second degree in
x
,
y
{\displaystyle x,y}
has form:
a
x
2
+
b
x
y
+
c
y
2
+
d
x
+
e
y
+
f
=
0.
{\displaystyle ax^{2}+bxy+cy^{2}+dx+ey+f=0.}
Rotation of coordinate axes when applied to the general equation produces the primed equation:
A
(
x
′
)
2
+
B
x
′
y
′
+
C
(
y
′
)
2
+
D
x
′
+
E
y
′
+
F
=
0
{\displaystyle A(x')^{2}+Bx'y'+C(y')^{2}+Dx'+Ey'+F=0}
where:
A
=
a
n
2
+
b
n
s
+
c
s
2
{\displaystyle A=an^{2}+bns+cs^{2}}
B
=
b
n
2
−
2
a
n
s
+
2
c
n
s
−
b
s
2
{\displaystyle B=bn^{2}-2ans+2cns-bs^{2}}
=
b
n
2
+
(
2
c
−
2
a
)
n
s
−
b
s
2
{\displaystyle =bn^{2}+(2c-2a)ns-bs^{2}}
C
=
c
n
2
−
b
n
s
+
a
s
2
{\displaystyle C=cn^{2}-bns+as^{2}}
D
=
d
n
+
e
s
{\displaystyle D=dn+es}
E
=
e
n
−
d
s
{\displaystyle E=en-ds}
F
=
f
{\displaystyle F=f}
n
=
cos
θ
{\displaystyle n=\cos \theta }
s
=
sin
θ
{\displaystyle s=\sin \theta }
Choose values of
sin
θ
,
cos
θ
{\displaystyle \sin \theta ,\cos \theta }
that make coefficient
B
=
0.
{\displaystyle B=0.}
From coefficient
B
{\displaystyle B}
above:
b
n
2
+
(
2
c
−
2
a
)
n
s
−
b
s
2
=
0
{\displaystyle bn^{2}+(2c-2a)ns-bs^{2}=0}
b
n
2
−
b
s
2
=
−
(
2
c
−
2
a
)
n
s
{\displaystyle bn^{2}-bs^{2}=-(2c-2a)ns}
Square both sides, substitute
(
1
−
s
s
)
{\displaystyle (1-ss)}
for
n
n
,
{\displaystyle nn,}
expand, gather like terms and result is:
P
S
2
+
Q
S
+
R
=
0
…
(
1
)
{\displaystyle PS^{2}+QS+R=0\ \dots \ (1)}
where:
S
=
sin
2
θ
{\displaystyle S=\sin ^{2}\theta }
P
=
4
a
2
+
4
b
2
+
4
c
2
−
8
a
c
{\displaystyle P=4a^{2}+4b^{2}+4c^{2}-8ac}
Q
=
−
P
{\displaystyle Q=-P}
R
=
b
2
{\displaystyle R=b^{2}}
See also:
Solving ellipse at origin.
From
(
1
)
{\displaystyle (1)}
above,
S
=
0.36
{\displaystyle S=0.36}
or
0.64.
{\displaystyle 0.64.}
sin
θ
=
S
=
±
0.6
{\displaystyle \sin \theta ={\sqrt {S}}=\pm 0.6}
or
±
0.8.
{\displaystyle \pm 0.8.}
Graph in 2 dimensions showing 2 ellipses, f'(x,y), where f'(x,y) is f(x,y) relative to its minor and major axes.
# python code.
values_of_cosθ_sinθ = (
( 0.6 , - 0.8 ),
( 0.6 , 0.8 ),
( 0.8 , - 0.6 ),
( 0.8 , 0.6 ),
)
a , b , c , d , e , f = 55 , - 24 , 48 , 0 , 0 , - 2496
for ns in values_of_cosθ_sinθ :
n , s = ns
B = b * n * n + ( 2 * c - 2 * a ) * n * s - b * s * s
if ( abs ( B ) < 1e-14 ) :
print ( 'ns =' , n , s )
A = a * n * n + b * n * s + c * s * s
C = c * n * n - b * n * s + a * s * s
D = d * n + e * s
E = e * n - d * s
F = f
print ( ' ' , A , 0 , C , D , E , F )
ns = 0.6 0.8
39.0 0 64.0 0.0 0.0 -2496
ns = 0.8 -0.6
64.0 0 39.0 0.0 0.0 -2496
When
cos
θ
,
sin
θ
=
0.6
,
0.8
,
f
′
(
x
,
y
)
=
39
x
2
+
64
y
2
−
2496
=
0.
{\displaystyle \cos \theta ,\sin \theta =0.6,0.8,\ f'(x,y)=39x^{2}+64y^{2}-2496=0.}
When
cos
θ
,
sin
θ
=
0.8
,
−
0.6
,
f
′
(
x
,
y
)
=
64
x
2
+
39
y
2
−
2496
=
0.
{\displaystyle \cos \theta ,\sin \theta =0.8,-0.6,\ f'(x,y)=64x^{2}+39y^{2}-2496=0.}
In this context,
f
′
(
x
,
y
)
{\displaystyle f'(x,y)}
is not the derivative of
f
(
x
,
y
)
.
{\displaystyle f(x,y).}
Expression
f
′
(
x
,
y
)
{\displaystyle f'(x,y)}
means
f
(
x
,
y
)
{\displaystyle f(x,y)}
relative to primed system
O
X
′
,
O
Y
′
{\displaystyle OX',OY'}
(red system.)