Talk:PlanetPhysics/Thermodynamics

Original TeX Content from PlanetPhysics Archive

edit
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Thermodynamics
%%% Primary Category Code: 05.70.Ce
%%% Filename: Thermodynamics.tex
%%% Version: 4
%%% Owner: bloftin
%%% Author(s): bloftin
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% of TeX increases, you will probably want to edit this, but

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \setcounter{section}{1}

\begin{definition}
\textbf{Thermodynamics} is a phenomenological description of \htmladdnormallink{equilibrium}{http://planetphysics.us/encyclopedia/ThermalEquilibrium.html} properties of macroscopic \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html}.
\end{definition}

\smallskip

\begin{definition}
As a \textbf{phenomenological} description, it is based on a number of empirical observations which are summarized by the laws of thermodynamics. A coherent logical and mathematical structure is then constructed on the basis of these observations, which leads to a variety of useful \htmladdnormallink{concepts}{http://planetphysics.us/encyclopedia/PreciseIdea.html}, and to testable relationships among various quantities. The laws of thermodynamics can only be justified by a more fundamental(microscopic) theory of nature. For example, \htmladdnormallink{statistical mechanics}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html} attempts to obtain these laws starting from classical or quantum mechanical equations for the evolution of collections of \htmladdnormallink{particles}{http://planetphysics.us/encyclopedia/Particle.html}.
\end{definition}

\smallskip

\begin{definition}
A system under study is said to be in \textbf{equilibrium} when its properties do not change appreciably with time over the intervals of interest(observation times). The dependence on the observation time makes the concept of equilibrium subjective. For example, window \htmladdnormallink{glass}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html} is in equilibrium as a \htmladdnormallink{solid}{http://planetphysics.us/encyclopedia/CoIntersections.html} over many decades, but flows like a fluid over time scales of millennia. At the other extreme, it is perfectly legitimate to consider the equilibrium between matter and \htmladdnormallink{radiation}{http://planetphysics.us/encyclopedia/Cyclotron.html} in the early \htmladdnormallink{Universe}{http://planetphysics.us/encyclopedia/MultiVerses.html} during the first minutes of the big bang.
\end{definition}

\smallskip

\begin{definition}
The \textbf{macroscopic system} in equilibrium is characterized by a number of thermodynamic coordinates or \htmladdnormallink{state functions}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html}. Some common examples of such coordinates are pressure and \htmladdnormallink{volume}{http://planetphysics.us/encyclopedia/Volume.html} (for a fluid), surface tension and area (for a film), tension and length (for a wire), \htmladdnormallink{Electric Field}{http://planetphysics.us/encyclopedia/ElectricField.html} and \htmladdnormallink{Polarization(}{http://planetphysics.us/encyclopedia/FluorescenceCrossCorrelationSpectroscopy.html}for a dielectric), $\dots$. A \htmladdnormallink{closed system}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html} is an idealization
similar to a \htmladdnormallink{point particle}{http://planetphysics.us/encyclopedia/CenterOfGravity.html} in \htmladdnormallink{mechanics}{http://planetphysics.us/encyclopedia/Mechanics.html} in that it is assumed to be completely isolated by adiabatic walls that don’t allow any exchange of \htmladdnormallink{heat}{http://planetphysics.us/encyclopedia/Heat.html} with the surroundings. By contrast, diathermic walls allow heat exchange for an \htmladdnormallink{open system}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html}. In addition to the above mechanical coordinates, the laws of thermodynamics imply the existence of other equilibrium state functions.
\end{definition}


\smallskip

\textbf{References}

This is a derivative \htmladdnormallink{work}{http://planetphysics.us/encyclopedia/Work.html} from [1] a \htmladdnormallink{Creative Commons Attribution-Noncommercial-Share Alike 3.0 work}{http://creativecommons.org/licenses/by-nc-sa/3.0/us/}

[1] MIT OpenCourseWare, 8.333 \htmladdnormallink{Statistical Mechanics I}{http://ocw.mit.edu/OcwWeb/Physics/8-333Fall-2007/LectureNotes/index.htm}: Statistical Mechanics of Particles, Fall 2007

\end{document}
Return to "PlanetPhysics/Thermodynamics" page.