%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: quantum groups and von Neumann algebras
%%% Primary Category Code: 00.
%%% Filename: QuantumGroupsAndVonNeumannAlgebras.tex
%%% Version: 7
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
%\newcommand{\>}{{\rangle}}
%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
\subsection{Hilbert spaces, Von Neumann algebras and Quantum Groups}
John von Neumann introduced a mathematical foundation for \htmladdnormallink{quantum mechanics}{http://planetphysics.us/encyclopedia/QuantumParadox.html} in the form of
\htmladdnormallink{$W^*$-algebras}{http://planetphysics.us/encyclopedia/WeakHopfCAlgebra.html}
of (quantum) bounded \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} in a (quantum:= presumed \emph{separable}, i.e. with a countable basis) \htmladdnormallink{Hilbert space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $H_S$. Recently, such
\htmladdnormallink{von Neumann algebras, $W^*$}{http://planetphysics.us/encyclopedia/WeakHopfCAlgebra2.html} and/or (more generally) \htmladdnormallink{C*-algebras}{http://planetphysics.us/encyclopedia/VonNeumannAlgebra2.html} are, for example, employed to define
\htmladdnormallink{locally compact quantum groups $CQG_{lc}$}{http://planetphysics.us/encyclopedia/LocallyCompactQuantumGroup.html} by equipping such
\htmladdnormallink{algebras with a co-associative multiplication}{http://planetphysics.us/encyclopedia/WeakHopfCAlgebra2.html}
and also with associated, both left-- and right-- \htmladdnormallink{Haar measures}{http://planetphysics.us/encyclopedia/HigherDimensionalQuantumAlgebroid.html}, defined by two semi-finite normal weights
\cite{Vainerman2003}.
\subsubsection{Remark on Jordan-Banach-von Neumann (JBW) algebras, $JBWA$}
A \emph{Jordan--Banach algebra} (a JB--algebra for short) is both a real Jordan algebra and a
\htmladdnormallink{Banach space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html}, where for all $S, T \in \mathfrak A_{\bR}$, we have
\bigbreak
\bigbreak
\bigbreak
$$ \begin{aligned} \Vert S \circ T \Vert &\leq \Vert S \Vert ~ \Vert T \Vert ~, \\ \Vert T
\Vert^2 &\leq \Vert S^2 + T^2 \Vert ~. \end{aligned}$$
\bigbreak
\bigbreak
\bigbreak
A \emph{JLB--algebra} is a $JB$--algebra $\mathfrak A_{\bR}$ together with a Poisson bracket for
which it becomes a Jordan--Lie algebra $JL$ for some $\hslash^2 \geq 0$~. Such JLB--algebras often
constitute the real part of several widely studied \htmladdnormallink{complex associative algebras}{http://planetphysics.us/encyclopedia/OrthomodularLatticeTheory.html}.
For the purpose of \htmladdnormallink{quantization}{http://planetphysics.us/encyclopedia/MoyalDeformation.html}, there are fundamental \htmladdnormallink{relations}{http://planetphysics.us/encyclopedia/Bijective.html} between
\htmladdnormallink{$\mathfrak A^{sa}$, JLB and Poisson algebras}{http://planetphysics.us/encyclopedia/JordanBanachAndJordanLieAlgebras.html}.
\bigbreak
\begin{definition}
A JB--algebra which is monotone complete and admits a separating set of normal sets is
called a \emph{JBW-algebra}.
\end{definition}
These appeared in the \htmladdnormallink{work}{http://planetphysics.us/encyclopedia/Work.html} of von Neumann who developed an \emph{\htmladdnormallink{orthomodular lattice theory}{http://planetphysics.us/encyclopedia/OrthomodularLatticeTheory.html} of projections on $\mathcal L(H)$} on which to study \emph{\htmladdnormallink{quantum logic}{http://planetphysics.us/encyclopedia/LQG2.html}}. BW-algebras have the following property: whereas $\mathfrak A^{sa}$ is a J(L)B--algebra, the self-adjoint part of a von Neumann algebra is a JBW--algebra.
\begin{thebibliography}{9}
\bibitem{Vainerman2003}
Leonid Vainerman. 2003.
\htmladdnormallink{``Locally Compact Quantum Groups and Groupoids'': \\
Proceedings of the Meeting of Theoretical Physicists and Mathematicians}{http://planetmath.org/?op=getobj&from=books&id=160}, Strasbourg, February 21-23, 2002., Walter de Gruyter Gmbh \& Co: Berlin.
\bibitem{QTF}
Von Neumann and the
\htmladdnormallink{Foundations of Quantum Theory.}{http://plato.stanford.edu/entries/qt-nvd/}
\bibitem{Bohm66}
B\"ohm, A., 1966, Rigged Hilbert Space and Mathematical Description of Physical Systems, {\em Physica A}, 236: 485-549.
\bibitem{Bohm89}
B\"ohm, A. and Gadella, M., 1989, \emph{Dirac Kets, Gamow Vectors and Gel'fand Triplets}, New York: Springer-Verlag.
\bibitem{DJ81}
Dixmier, J., 1981, \emph{Von Neumann Algebras}, Amsterdam: North-Holland Publishing Company. [First published in French in 1957: \emph{Les Alg\`ebres d'Op\'erateurs dans l'Espace Hilbertien}, Paris: Gauthier-Villars.]
\bibitem{GINM43}
Gelfand, I. and Neumark, M., 1943, On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space,
{\em Recueil Math\'ematique} [Matematicheskii Sbornik] Nouvelle S\'erie, 12 [54]: 197-213. [Reprinted in C*-algebras: 1943-1993, in the series Contemporary Mathematics, 167, Providence, R.I. : American Mathematical Society, 1994.]
\bibitem{Alex55}
Grothendieck, A., 1955, Produits Tensoriels Topologiques et Espaces Nucl\'eaires,
\emph{Memoirs of the American Mathematical Society}, 16: 1-140.
\bibitem{HS90}
Horuzhy, S. S., 1990, {\em Introduction to Algebraic Quantum Field Theory}, Dordrecht: Kluwer Academic Publishers.
\bibitem{JV55}
J. von Neumann.,1955, {\em Mathematical Foundations of Quantum Mechanics.}, Princeton, NJ: Princeton University Press. [First published in German in 1932: {\em Mathematische Grundlagen der Quantenmechanik}, Berlin: Springer.]
\bibitem{JV37}
J. von Neumann, 1937, {\em Quantum Mechanics of Infinite Systems}, first published in (R\'edei and St\"oltzner 2001, 249-268). [A mimeographed version of a lecture given at Pauli's seminar held at the Institute for Advanced Study in 1937, John von Neumann Archive, Library of Congress, Washington, D.C.]
\end{thebibliography}
\end{document}