Talk:PlanetPhysics/Quantum 6J Symbols and TQFT State on the Tetrahedron

Original TeX Content from PlanetPhysics Archive

edit
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: quantum 6j-symbols and TQFT state
%%% Primary Category Code: 03.
%%% Filename: Quantum6jSymbolsAndTQFTStateOnTheTetrahedron.tex
%%% Version: 8
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\usepackage{syntonly}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble.  as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\usepackage{maplestd2e}

% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]

\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{\mathcal G}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}

\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}

\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\newcommand{\<}{{\langle}}

%\newcommand{\>}{{\rangle}}

%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}

\def\baselinestretch{1.1}


\hyphenation{prod-ucts}

%\grpeometry{textwidth= 16 cm, textheight=21 cm}

\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}

%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\midsqn}[1]{\ar@{}[dr]|{#1}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\syntaxonly
\begin{document}

 \section{Topological Quantum Field (TQFT) State on the Tetrahedron}


Let us consider first a \htmladdnormallink{regular}{http://planetphysics.us/encyclopedia/CoIntersections.html} tetrahedron whose corners will
have attached to them the \htmladdnormallink{TQFT}{http://planetphysics.us/encyclopedia/SUSY2.html} symbols representing a TQF state in terms of so-called `j-symbols' as further detailed next. The vertices of the tetrahedron are located at the points $(a_x, a_y, a_z)$, $(b_x, b_y, b_z)$, $(c_x, c_y, c_z)$, and $(d_x, d_y, d_z)$, that will be labeled, respectively, as $1,2,3,4$.

\begin{definition}
A \emph{\htmladdnormallink{quantum field}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} (\htmladdnormallink{QF}{http://planetphysics.us/encyclopedia/SUSY2.html}) state} $\phi$ provides a total order denoted by $ \leq_{\phi}$ on the
vertices of the tetrahedron, and thus also assigns a `direction' to each edge of the tetrahedron--from the
apparently `smaller' to the apparently `larger' vertices; a QF state also labels each edge $ e = (i,j)$,
by an element $\phi_1 (e)$ of $B_A$, which is a \emph{distinguished basis of a fusion algebra} $\A$, that is, a finite-dimensional, unital, involutive algebra over $\mathbb{C}$ --the \htmladdnormallink{field}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html} of complex numbers. Moreover, the QF state assigns an element ${\phi}^2 (f)$ --called an intertwiner-- of a \htmladdnormallink{Hilbert space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $$\H_{\phi}(f)= {\H^{\phi_1 (ik)}}_{\phi_1 (jk), \phi_1 (ij)}$$
to each face $f=(ijk)$ of the tetrahedron, such that $i\prec_{\phi} j \prec_{\phi}k .$
\end{definition}

\subsection{Remarks}
A \emph{\htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} \htmladdnormallink{quantum field theory}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html}} ({\em TQFT}) is described as a mathematical approach to quantum field theory that allows the \htmladdnormallink{computation}{http://planetphysics.us/encyclopedia/LQG2.html} of \htmladdnormallink{topological invariants}{http://planetphysics.us/encyclopedia/ModuleAlgebraic.html} of \htmladdnormallink{quantum state spaces}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} (\htmladdnormallink{QSS}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html}), usually for cases of lower dimensions encountered in certain condensed phases or strongly correlated (quantum) \htmladdnormallink{superfluid}{http://planetphysics.us/encyclopedia/QuantumStatisticalTheories.html} states. TQFT has some of its origins in \htmladdnormallink{theoretical physics}{http://planetphysics.us/encyclopedia/PhysicalMathematics2.html} as well as Michael Atiyah's research; this was followed by Edward Witten, Maxim Kontsevich, Jones and Donaldson, who all have been awarded Fields Medals for \htmladdnormallink{work}{http://planetphysics.us/encyclopedia/Work.html} related to topological quantum field theory; furthermore, Edward Witten and Maxim Kontsevich shared in 2008 the Crafoord prize for TQFT related work. As an example, Maxim Kontsevich introduced the \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} of homological mirror (quantum) symmetry in \htmladdnormallink{relation}{http://planetphysics.us/encyclopedia/Bijective.html} to a mathematical conjecture in \htmladdnormallink{superstring}{http://planetphysics.us/encyclopedia/10DBrane.html} theory.

\begin{thebibliography}{9}

\bibitem{VKVS2k1}
V. Kodyiyalam and V. S. Sunder. 2001.
\htmladdnormallink{{\em Topological Quantum Field Theories From Subfactors}}{http://planetmath.org/?op=getobj&from=books&id=174} ., Chapman and Hall/CRC.

\end{thebibliography}

\subsection{Maple eps Graphics}
\begin{maplelatex}\mapleinline{inert}{2d}{%[poincare, generate_ic, zoom, hamilton_eqs]}{
$[{\it poincare},{\it generate\_ic},{\it zoom},{\it hamilton\_eqs}\\
\mbox{}]$}
\end{maplelatex}\begin{maplelatex}\begin{Maple Heading 1}{\textbf{The Toda Hamiltonian}}\end{Maple Heading 1}
\end{maplelatex}
\begin{maplelatex}\begin{Maple Normal}{\textbf{Reference:}A.J. Lichtenberg and M.A. Lieberman, "Regular and Stochastic Motion", \textit{Applied Mathematical Sciences} 38 (New York: Springer Verlag, 1994).}\end{Maple Normal}
\textbf{H := 1/2*(p1\symbol{94}2 + p2\symbol{94}2) + 1/24*(exp(2*q2+2*sqrt(3)*q1) + exp(2*q2-2*sqrt(3)*q1) + exp(-4*q2))-1/8;}\end{maplelatex}
\mapleresult
\begin{maplelatex}\mapleinline{inert}{2d}{%H := p1^2/2+p2^2/2+1/24*exp(2*q2+2*3^(1/2)*q1)+1/24*exp(2*q2-2*3^(1/2)*q1)+1/24*exp(-4*q2)-1/8}{
$H\, := \,1/2\,{{\it p1}}^{2}+1/2\,{{\it p2}}^{2}+1/24\,{e^{2\,{\it q2}+2\,\sqrt {3}{\it q1}}}\\
\mbox{}+1/24\,{e^{2\,{\it q2}-2\,\sqrt {3}{\it q1}}}+1/24\,{e^{-4\,{\it q2}}}-1/8$}
\end{maplelatex}\begin{mapleinput}
\mapleinline{active}{1d}{\textbf{H, t=-150..150, \{[0,.1,1.4,.1,0]\}:}}{}
\end{mapleinput}
\begin{mapleinput}
\mapleinline{active}{1d}{\begin{Maple Normal}{\textbf{poincare(%, stepsize=.05,iterations=5);}(12 sec.)}\end{Maple Normal}
}{}
\end{mapleinput}

\mapleresult
\begin{maplelatex}\mapleinline{inert}{2d}{%_____________________________________________________}{
\[{\it \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}\]}
\end{maplelatex}\begin{maplelatex}\mapleinline{inert}{2d}{%`H = .99005020`, ` Initial conditions:`, t = 0, p1 = .1, p2 = 1.4, q1 = .1, q2 = 0}{
$\mbox {{\tt `H = .99005020`}},\,\mbox {{\tt ` Initial conditions:`}},\,t=0,\,{\it p1}= 0.1,\,{\it p2}= 1.4,\,{\it q1}= 0.1,\,{\it q2}=0$}
\end{maplelatex}\begin{maplelatex}\mapleinline{inert}{2d}{%`Number of points found crossing the (p1,q1) plane: 127`}{
$\mbox {{\tt `Number of points found crossing the (p1,q1) plane: 127`}}$}
\end{maplelatex}\begin{maplelatex}\mapleinline{inert}{2d}{%`Maximum H deviation : .5740000000e-5 %`}{
$\mbox {{\tt `Maximum H deviation : .5740000000e-5 \%`}}$}
\end{maplelatex}\begin{maplelatex}\mapleinline{inert}{2d}{%_____________________________________________________}{
\[{\it \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}\]}
\end{maplelatex}\begin{maplelatex}\mapleinline{inert}{2d}{%`Time consumed: 12 seconds`}{
$\mbox {{\tt `Time consumed: 12 seconds`}}$}
\end{maplelatex}



\begin{maplelatex}\begin{Maple Normal}{Figure 1.a. shows a 2-D surface-of-section (2PS) over the q2=0 plane, with 127 intersection points lying on smooth curves. }\end{Maple Normal}
\end{maplelatex}\begin{mapleinput}
\mapleinline{active}{1d}{\begin{Maple Normal}{\textbf{poincare(%%,stepsize=.05,iterations=5,scene=[p2,q2]);}(13 sec.)}\end{Maple Normal}
}{}
\end{mapleinput}

\htmladdnormallink{MapleForPlanetPhysics}{http://planetphysics.org/encyclopedia/MapleForPlanetPhysics.html} 

\end{document}
Return to "PlanetPhysics/Quantum 6J Symbols and TQFT State on the Tetrahedron" page.