%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: probability distribution functions in physics
%%% Primary Category Code: 00.
%%% Filename: ProbabilityDistributionFunctionsInPhysics.tex
%%% Version: 33
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
%%Planet physics followed by special preamble
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\newcommand{\md}{d}
\newcommand{\mv}[1]{\mathbf{#1}} % matrix or vector
\newcommand{\mvt}[1]{\mv{#1}^{\mathrm{T}}}
\newcommand{\mvi}[1]{\mv{#1}^{-1}}
\newcommand{\mderiv}[1]{\frac{\md}{\md {#1}}} %d/dx
\newcommand{\mnthderiv}[2]{\frac{\md^{#2}}{\md {#1}^{#2}}} %d^n/dx
\newcommand{\mpderiv}[1]{\frac{\partial}{\partial {#1}}} %partial d^n/dx
\newcommand{\mnthpderiv}[2]{\frac{\partial^{#2}}{\partial {#1}^{#2}}} %partial d^n/dx
\newcommand{\borel}{\mathfrak{B}}
\newcommand{\integers}{\mathbb{Z}}
\newcommand{\rationals}{\mathbb{Q}}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\complexes}{\mathbb{C}}
\newcommand{\naturals}{\mathbb{N}}
\newcommand{\defined}{:=}
\newcommand{\var}{\mathrm{var}}
\newcommand{\cov}{\mathrm{cov}}
\newcommand{\corr}{\mathrm{corr}}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\powerset}[1]{\mathcal{P}(#1)}
\newcommand{\bra}[1]{\langle#1 \vert}
\newcommand{\ket}[1]{\vert \hspace{1pt}#1\rangle}
\newcommand{\braket}[2]{\langle #1 \ket{#2}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\norm}[1]{\left|\left|#1\right|\right|}
\newcommand{\esssup}{\mathrm{ess\ sup}}
\newcommand{\Lspace}[1]{L^{#1}}
\newcommand{\Lone}{\Lspace{1}}
\newcommand{\Ltwo}{\Lspace{2}}
%%\newcommand{\Lp}{\Lspace{p}}
\newcommand{\Lq}{\Lspace{q}}
\newcommand{\Linf}{\Lspace{\infty}}
\newcommand{\sequence}[1]{\{#1\}}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
This is a contributed topic on probability distribution functions and their
applications in physics, mostly in spectroscopy, \htmladdnormallink{quantum mechanics}{http://planetphysics.us/encyclopedia/QuantumParadox.html}, \htmladdnormallink{statistical mechanics}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html} and the theory of extended \htmladdnormallink{QFT}{http://planetphysics.us/encyclopedia/HotFusion.html} \htmladdnormallink{operator algebras}{http://planetphysics.us/encyclopedia/Groupoid.html} (extended symmetry, \htmladdnormallink{quantum groupoids}{http://planetphysics.us/encyclopedia/QuantumGroupoids.html} with \htmladdnormallink{Haar measure}{http://planetphysics.us/encyclopedia/HigherDimensionalQuantumAlgebroid.html} and \htmladdnormallink{quantum algebroids}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html}).
\subsection{Probability Distribution Functions in Physics}
\subsubsection{Physical Examples}
\begin{example}
{\bf \htmladdnormallink{Fermi-Dirac distribution}{http://planetphysics.us/encyclopedia/FermiDiracDistribution.html}}
This is a widely used probability distribution function (pdf) applicable to all \htmladdnormallink{fermion}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} \htmladdnormallink{particles}{http://planetphysics.us/encyclopedia/Particle.html} in \htmladdnormallink{quantum statistical mechanics}{http://planetphysics.us/encyclopedia/QuantumStatisticalTheories.html}, and is defined as:
\[
f_{D-F}(\epsilon) = \frac{1}{1+exp(\frac{\epsilon - \mu}{kT})},
\]
where $\epsilon$ denotes the \htmladdnormallink{energy}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} of the fermion \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} and $\mu$ is the {\em chemical potential} of the fermion system at an \htmladdnormallink{absolute temperature}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html} T.
\end{example}
\begin{example}
A classical example of a continuous probability distribution function on $\reals$ is the {\em Gaussian distribution}, or {\em normal distribution}
$$ f(x) := \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-m)^2/2\sigma^2},$$
where $\sigma^2$ is a \htmladdnormallink{parameter}{http://planetphysics.us/encyclopedia/Parameter.html} related to the width of the distribution (measured for example at half-heigth).
\end{example}
In high-resolution spectroscopy, however, similar but much narrower continuous distribution \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html} called {\em Lorentzians} are more common; for example, high-resolution $^1H$ \htmladdnormallink{NMR}{http://planetphysics.us/encyclopedia/SpectralImaging.html} \htmladdnormallink{absorption}{http://planetphysics.us/encyclopedia/FluorescenceCrossCorrelationSpectroscopy.html} spectra of neat liquids consist of such Lorentzians whereas rigid \htmladdnormallink{solids}{http://planetphysics.us/encyclopedia/CoIntersections.html} exhibit often only Gaussian peaks resulting from both the overlap as well as the marked broadening of Lorentzians.
\subsection{General definitions of probability distribution functions}
\begin{definition}
One needs to introduce first a \htmladdnormallink{Borel space}{http://planetphysics.us/encyclopedia/BorelSpace.html} $\borel$, then consider a {\em measure space} $S_M:= (\Omega, \borel, \mu)$, and finally define a real function that is measurable `almost everywhere' on its \htmladdnormallink{domain}{http://planetphysics.us/encyclopedia/Bijective.html} $\Omega$ and is also normalized to unity. Thus, consider $(\Omega, \borel, \mu)$ to be a measure space $S_M$. A {\em probability distribution function (pdf)} on (the domain) $\Omega$ is a function $f_p: \Omega \longrightarrow \reals$ such that:
\begin{enumerate}
\item $f_p$ is $\mu$-measurable
\item $f_p$ is nonnegative $\mu$-measurable-almost everywhere.
\item $f_p$ satisfies the equation
$$
\int_{\Omega} f_p(x)\ d\mu = 1.
$$
\end{enumerate}
\end{definition}
Thus, a probability distribution function $f_p$ induces a {\em probability measure} $M_P$ on the measure space $(\Omega, \borel)$, given by
$$M_P(X) := \int_X f_p(x)\ d\mu = \int_{\Omega} 1_X f_p(x)\ d\mu,$$
for all $x \in \borel$. The measure $M_P$ is called the {\em associated probability measure} of $f_p$. $M_P$ and $\mu$ are different measures although both have the same underlying \htmladdnormallink{measurable space}{http://planetphysics.us/encyclopedia/InvariantBorelSet.html} $S_M := (\Omega, \borel)$.
\begin{definition}
\textbf{The discrete distribution (dpdf)}
Consider a countable set $I$ with a counting measure imposed on $I$, such that $\mu(A) := |A|$, is the cardinality of $A$, for any subset $A \subset I$. A {\em discrete probability distribution function (\bf dpdf)} $f_d$ on $I$ can be then defined as a nonnegative function $f_d : I \longrightarrow \reals$ satisfying the equation
$$\sum_{i \in I} f_d(i) = 1.$$
\end{definition}
A simple example of a $dpdf$ is any Poisson distribution $P_r$ on $\naturals$ (for any real number $r$), given by the \htmladdnormallink{formula}{http://planetphysics.us/encyclopedia/Formula.html} $$ P_r(i) := e^{-r} \frac{r^i}{i!}, $$
for any $i \in \naturals$.
Taking any probability (or measure) space $S_M$ defined by the triplet $(\Omega, \borel, \mu)$ and a {\em random variable} $X: \Omega \longrightarrow I$, one can construct a distribution function on $I$ by defining
$$f(i) := \mu(\{X = i\}).$$ The resulting $\Delta$ function is called the {\em distribution of $X$ on $I.$}
\begin{definition}
\textbf{The continuous distribution (cpdf)}
Consider a measure space $S_M$ specified as the triplet
$(\reals, \borel_\lambda, \lambda)$, that is, the set of real numbers equipped with a {\em Lebesgue measure}. Then, one can define a {\em continuous probability distribution function} ({\em cpdf}) $f_c : \reals \longrightarrow \reals$ is simply a measurable, nonnegative almost everywhere function such that
$$ \int_{-\infty}^\infty f_c(x)\ dx = 1.$$
\end{definition}
The associated measure has a \htmladdnormallink{Radon--Nikodym derivative}{RadonNikodymTheorem} with respect to $\lambda$ equal to $f_c$:
$$ \frac{dP}{d\lambda} = f_c.$$
\begin{definition}
One defines the {\em cummulative distribution function, or {\bf cdf},} $F$ of $f_c$ by the formula
$$F(x) := P(\{X \leq x\}) = \int_{-\infty}^x f(t)\ dt, $$
for all $x \in \reals.$
\end{definition}
\begin{thebibliography}{9}
\bibitem{BA91}
B. Aniszczyk. 1991. A rigid Borel space., {\em Proceed. AMS.}, 113 (4):1013-1015.,
\htmladdnormallink{available online}{http://www.jstor.org/pss/2048777}.
\bibitem{AC79}
A. Connes.1979. Sur la th\'eorie noncommutative de l' integration, {\em Lecture Notes in
Math.}, Springer-Verlag, Berlin, {\bf 725}: 19-14.
\end{thebibliography}
\end{document}