Talk:PlanetPhysics/Principles of Thermodynamics

Original TeX Content from PlanetPhysics Archive

edit
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: principles of thermodynamics
%%% Primary Category Code: 05.70.-axx
%%% Filename: PrinciplesOfThermodynamics.tex
%%% Version: 19
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble.  

\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]

\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}

\def\baselinestretch{1.1}


\hyphenation{prod-ucts}

%\grpeometry{textwidth= 16 cm, textheight=21 cm}

\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 This is a contributed entry on Thermodynamics principles and/or laws; the latter are defined as those primary \htmladdnormallink{propositions}{http://planetphysics.us/encyclopedia/Predicate.html} that are fundamental to the logical and mathematical development of \htmladdnormallink{Thermodynamics}{http://planetphysics.us/encyclopedia/Thermodynamics.html} in accord with all experimental findings in classical molecular physics. Thus, thermodynamics has its historical roots in studies of \htmladdnormallink{heat}{http://planetphysics.us/encyclopedia/Heat.html} and Molecular Physics.

In particular, such thermodynamic laws impose essential constrains on the
{\em equations of state} and {\em state functions} that are employed to describe all closed thermodynamic \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html}. However, the thermodynamic treatment of open systems is not yet a `closed book'. One also notes that such thermodynamic laws that hold for all closed systems may still be further derived from statistical mechanics.

\section{Principles of Thermodynamics}

\subsection{Basic Concepts}
{Thermodynamic systems}: Closed vs. Open systems.

\textbf{Thermodynamic Processes:}
Reversible vs. Irreversible := \htmladdnormallink{equilibrium}{http://planetphysics.us/encyclopedia/ThermalEquilibrium.html} vs. Non-equilibrium

\subsection{The Zeroth Principle}

\subsubsection{Thermal Equilibrium definition. Temperature and Molecular Motions}

\htmladdnormallink{Temperature}{http://planetphysics.us/encyclopedia/BoltzmannConstant.html} is a \emph{measure} of the degree of molecular \htmladdnormallink{motion}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html}: the higher the average \htmladdnormallink{magnitude}{http://planetphysics.us/encyclopedia/AbsoluteMagnitude.html} of \htmladdnormallink{velocities}{http://planetphysics.us/encyclopedia/Velocity.html} in a system measured at equilibrium with the system, the higher the temperature is (the hotter the system is).

\textbf{\htmladdnormallink{absolute temperature scale}{http://planetphysics.us/encyclopedia/BoltzmannConstant.html}}

[More to come...]

\begin{remark}
Whereas absolute temperatures of molecular systems can only take on positive values, \htmladdnormallink{spin}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} temperature--or spin-lattice temperature-- for example, may take on `negative' values as a result of spin population inversion through \htmladdnormallink{Polarization}{http://planetphysics.us/encyclopedia/FluorescenceCrossCorrelationSpectroscopy.html}, or cross-polarization.

Such cross-polarization processes might be thus utilized in designing and operating \htmladdnormallink{quantum `computers}{http://planetphysics.us/encyclopedia/CategoriesOfQuantumAutomataAndQuantumComputers.html}' or quantum nano-robots.
\end{remark}


\subsection{The First Principle}
\textbf{Total \htmladdnormallink{energy}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} Conservation}

\subsection{The Second Principle}

During any thermodynamic process the entropy of a closed system always increases if the closed system is not at equilibrium (when the latter becomes constant), [or, equivalently, that perpetual motion machines are impossible].


\subsection{The Third Principle}
The entropy of any crystalline system tends to zero in the limit of absolute zero temperature.


\subsection{Discussion}

Suggested Fourth Principle: \emph{the Onsager reciprocity \htmladdnormallink{relations}{http://planetphysics.us/encyclopedia/Bijective.html} for non-equilibrium, open systems}


\textbf{Remark:} Commonly, the four principles of reversible thermodynamics
are also known as "{\em the four thermodynamic laws}".

\end{document}
Return to "PlanetPhysics/Principles of Thermodynamics" page.