%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Observables and States
%%% Primary Category Code: 03.65.Ca
%%% Filename: ObservablesAndStates.tex
%%% Version: 12
%%% Owner: rspuzio
%%% Author(s): bci1, rspuzio
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\usepackage{syntonly}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{maplestd2e}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\syntaxonly
\begin{document}
\section{Introduction}
The notions of observables and states are fundamental
to \htmladdnormallink{mechanics}{http://planetphysics.us/encyclopedia/Mechanics.html}. In this entry, we shall begin with the conceptual
background to these ideas, then proceed to examine how these
notions \htmladdnormallink{work}{http://planetphysics.us/encyclopedia/Work.html} in classical, statistical, and \htmladdnormallink{quantum mechanics}{http://planetphysics.us/encyclopedia/QuantumParadox.html}.
The basis for these notions lies in
making numerical measurements on physical \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html} and comparing
the observed values with predicted theoretical values. The
value measured will depend on the quantity being measured and
upon the initial and \htmladdnormallink{boundary}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html} conditions imposed on the system.
To account for this dependence, we introduce observables and
states --- an \htmladdnormallink{observable}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} is a mathematical entity in a theory
which represents a measurement which can be made on the physical
system described by that theory and a state is a mathematical
entity which encodes conditions placed on that system. A
theory of a system will provide the set of observables and
the set of states for that system, describe how they evolve
with time, and specify how to obtain numerical values by
combining states and observables.
To make this discussion concrete, we may consider an elementary
example --- the freely falling body. Here, examples of
observables would include the height and \htmladdnormallink{velocity}{http://planetphysics.us/encyclopedia/Velocity.html} of the \htmladdnormallink{object}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}.
The state of the system may be specified by stating the initial
height and velocity or by specifying the height at an initial
time and at a final time. Given such a specification, we can
then compute the values of velocity and \htmladdnormallink{position}{http://planetphysics.us/encyclopedia/Position.html} at any time
using these formulae
\begin{align*}
h - h_0 &= {1 \over 2} g (t - t_0)^2 \\
v - v_0 &= g (t - t_0) .
\end{align*}
The values so obtained may then be compared with experiment.
In addition to the height and velocity, there are other observables
such as \htmladdnormallink{energy}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html}. However, it is possible to express
these observables algebraically in terms of the height and velocity.
(Note that this requires use of the equations of \htmladdnormallink{motion}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html}.)
\begin{align*}
E &= {1 \over 2} m v^2 + m g h
\end{align*}
\section{Quantum Operators as Observables in Quantum Theories}
\begin{definition} {\em \htmladdnormallink{quantum operator algebras}{http://planetphysics.us/encyclopedia/Groupoid.html}} (\htmladdnormallink{QOA}{http://planetphysics.us/encyclopedia/QAT.html}) in \htmladdnormallink{quantum field theories}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html} are defined as the algebras of observable operators, and as such, they are also related to the von Neumann algebra;
\htmladdnormallink{quantum operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html} are usually defined on \htmladdnormallink{Hilbert spaces}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html}, or in some \htmladdnormallink{QFTs}{http://planetphysics.us/encyclopedia/CategoricalQuantumLMAlgebraicLogic2.html} on \htmladdnormallink{Hilbert space bundles}{http://planetphysics.us/encyclopedia/HilbertBundle.html} or other similar families of spaces.
\end{definition}
\begin{remark}
{\em \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of Banach $*$-algebras} (that are defined on Hilbert spaces) are closely related to C* -algebra representations which provide a useful approach to defining \htmladdnormallink{quantum space-times}{http://planetphysics.us/encyclopedia/SUSY2.html}.
\end{remark}
\subsection{Quantum operator algebras in quantum field theories: QOA Role in QFTs}
Important examples of quantum operators are: the \htmladdnormallink{Hamiltonian operator}{http://planetphysics.us/encyclopedia/QuantumHamiltonianOperator.html} (or \htmladdnormallink{Schr\"odinger operator}{http://planetphysics.us/encyclopedia/Hamiltonian2.html}), the position and \htmladdnormallink{momentum}{http://planetphysics.us/encyclopedia/Momentum.html} operators, Casimir operators, unitary operators and \htmladdnormallink{spin}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} operators. The observable operators are also {\em self-adjoint}. More general operators were recently defined, such as Prigogine's superoperators. The observable corresponding to the \htmladdnormallink{Hamiltonian operator}{http://planetphysics.us/encyclopedia/Hamiltonian2.html} of a closed, conservative system is its energy.
Another development in quantum theories was the introduction of Frech\'et nuclear spaces or `\htmladdnormallink{rigged' Hilbert spaces}{http://planetphysics.us/encyclopedia/I3.html} (\htmladdnormallink{Hilbert bundles}{http://planetphysics.us/encyclopedia/HilbertBundle.html}).
\subsection{Basic mathematical definitions in QOA: }
\begin{itemize}
\item {\em Von Neumann algebra}
\item {\em \htmladdnormallink{Hopf algebra}{http://planetphysics.us/encyclopedia/QuantumGroup.html}}
\item {\em \htmladdnormallink{groupoids}{http://planetphysics.us/encyclopedia/LocallyCompactGroupoid.html}}
\item {\em \htmladdnormallink{Haar systems}{http://planetphysics.us/encyclopedia/Groupoid.html} associated to measured groupoids or \htmladdnormallink{locally compact groupoids}{http://planetphysics.us/encyclopedia/LocallyCompactGroupoid.html}.}
\item \htmladdnormallink{C*-algebras}{http://planetphysics.us/encyclopedia/VonNeumannAlgebra2.html} and \htmladdnormallink{quantum groupoids}{http://planetphysics.us/encyclopedia/QuantumGroupoids.html}
\end{itemize}
\textbf{[more to come]}
\begin{thebibliography}{99}
\bibitem{AS}
E. M. Alfsen and F. W. Schultz: \emph{Geometry of State Spaces of
Operator Algebras}, Birkh\''auser, Boston--Basel--Berlin (2003).
\bibitem{ICB71}
I. Baianu : Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic--Topological Quantum Computations., \emph{Proceed. 4th Intl. Congress LMPS}, (August-Sept. 1971).
\bibitem{BGB07}
I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non--Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., \emph{Axiomathes} \textbf{17},(3-4): 353-408(2007).
\bibitem{BSS}
F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, \emph{Phys. Rev. Lett.} \textbf{89} No. 18 (1--4): 181-201 (2002).
\bibitem{Chaician}
M. Chaician and A. Demichev: \emph{Introduction to Quantum Groups}, World Scientific (1996).
\bibitem{Connesbook}
A. Connes: \emph{Noncommutative Geometry}, Academic Press 1994.
\bibitem{CF}
L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. \textit{J. Math. Phys}. \textbf{35} (no. 10): 5136-5154 (1994).
\bibitem{DT96}
W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, \textbf{13}:611--632 (1996). $doi: 10.1088/0264--9381/13/4/004$
\bibitem{Drinfeld}
V. G. Drinfel'd: Quantum groups, In \emph{Proc. Int. Cong. of
Mathematicians, Berkeley 1986}, (ed. A. Gleason), Berkeley, 798--820 (1987).
\bibitem{Ellis}
G. J. Ellis: Higher dimensional crossed modules of algebras,
\emph{J. of Pure Appl. Algebra} \textbf{52} (1988), 277--282.
\bibitem{Etingof1}
P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys., 196: 591-640 (1998)
\bibitem{Etingof2}
P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum
groups, \emph{Commun. Math. Phys.} \textbf{205} (1): 19--52 (1999)
\bibitem{Etingof3}
P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang--Baxter equations, in \emph{Quantum Groups and Lie Theory (Durham, 1999)}, pp. 89--129, Cambridge University Press, Cambridge, 2001.
\bibitem{Fauser2002}
B. Fauser: A treatise on quantum Clifford Algebras. Konstanz,
Habilitationsschrift. $arXiv.math.QA/0202059$ (2002).
\bibitem{Fell}
J. M. G. Fell. 1960. ``The Dual Spaces of C*--Algebras.'', {\em Transactions of the American Mathematical Society}, \textbf{94}: 365--403 (1960).
\bibitem{FernCastro}
F.M. Fernandez and E. A. Castro.: \textit{(Lie) Algebraic Methods in Quantum Chemistry and Physics.}, Boca Raton: CRC Press, Inc (1996).
\bibitem{Feynman}
R. P. Feynman: Space--Time Approach to Non--Relativistic Quantum Mechanics, {\em Reviews of Modern Physics}, 20: 367-387 (1948). [It is also reprinted in (Schwinger 1958).]
\bibitem{GN}
Gel'fand, I. and Naimark, M., 1943, On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space, {\em Recueil Math\'ematique [Matematicheskii Sbornik] Nouvelle S\'erie},
\textbf{12} [54]: 197-213. [Reprinted in C*-algebras: 1943--1993, in the series Contemporary Mathematics, 167, Providence, R.I. : American Mathematical Society, 1994.]
\bibitem{GR02}
R. Gilmore: \textit{``Lie Groups, Lie Algebras and Some of Their Applications.''},
Dover Publs., Inc.: Mineola and New York, 2005.
\bibitem{Hahn1}
P. Hahn: Haar measure for measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}: 1-33(1978).
\bibitem{Hahn2}
P. Hahn: The regular representations of measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}:34-72(1978).
\bibitem{HeynLifsctz}
R. Heynman and S. Lifschitz. 1958. \emph{``Lie Groups and Lie Algebras''}., New York and London: Nelson Press.
\bibitem{HLS2k8}
C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theory, (2008) $arXiv:0709.4364v2 [quant-ph]$
\end{thebibliography}
\end{document}