Talk:PlanetPhysics/Locally Compact Groupoid

Original TeX Content from PlanetPhysics Archive

edit
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: locally compact groupoid
%%% Primary Category Code: 03.
%%% Filename: LocallyCompactGroupoid.tex
%%% Version: 1
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble.  as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.

\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}

% there are many more packages, add them here as you need them

% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]

\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}

\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}

\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\newcommand{\<}{{\langle}}

%\newcommand{\>}{{\rangle}}

%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}

\def\baselinestretch{1.1}


\hyphenation{prod-ucts}

%\grpeometry{textwidth= 16 cm, textheight=21 cm}

\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}

%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}

\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 \begin{definition}
A \emph{locally compact groupoid} $\grp_{lc}$ is defined as a groupoid that has also the \htmladdnormallink{topological structure}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of a second countable, \htmladdnormallink{locally compact Hausdorff space}{http://planetphysics.us/encyclopedia/LocallyCompactHausdorffSpaces.html}, and if the product and also inversion maps are continuous. Moreover, each $\grp_{lc}^u$ as well as the unit space $\grp_{lc}^0$ is closed in $\grp_{lc}$.
\end{definition}

\textbf{Remarks:}
The locally compact Hausdorff second countable spaces are {\em analytic}.
One can therefore say also that $\grp_{lc}$ is analytic.
When the groupoid $\grp_{lc}$ has only one \htmladdnormallink{object}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} in its object space, that is, when it becomes a \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, the above definition is restricted to that of a
\emph{locally compact \htmladdnormallink{topological group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}}; it is then a special case of a one-object \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} with all of its \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} being invertible, that is also endowed with a locally compact, topological structure.

Let us also recall the related \htmladdnormallink{concepts}{http://planetphysics.us/encyclopedia/PreciseIdea.html} of groupoid and \emph{\htmladdnormallink{topological groupoid}{http://planetphysics.us/encyclopedia/GroupoidHomomorphism2.html}}, together with the appropriate notations needed to define a
\emph{locally compact groupoid}.

\textbf{Groupoids and \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} Groupoids}

Recall that a groupoid $\grp$ is a \htmladdnormallink{small category}{http://planetphysics.us/encyclopedia/Cod.html} with inverses
over its set of objects $X = Ob(\grp)$~. One writes $\grp^y_x$ for
the set of morphisms in $\grp$ from $x$ to $y$~.
\emph{A topological groupoid} consists of a space $\grp$, a distinguished subspace
$\grp^{(0)} = \obg \subset \grp$, called {\it the space of objects} of $\grp$,
together with maps
\begin{equation}
r,s~:~ \xymatrix{ \grp \ar@<1ex>[r]^r \ar[r]_s & \grp^{(0)} }
\end{equation}

called the {\it range} and {\it \htmladdnormallink{source maps}{http://planetphysics.us/encyclopedia/SmallCategory.html}} respectively,
together with a law of \htmladdnormallink{composition}{http://planetphysics.us/encyclopedia/Cod.html} \begin{equation}
\circ~:~ \grp^{(2)}: = \grp \times_{\grp^{(0)}} \grp = \{
~(\gamma_1, \gamma_2) \in \grp \times \grp ~:~ s(\gamma_1) =
r(\gamma_2)~ \}~ \lra ~\grp~,
\end{equation}

such that the following hold~:~
\begin{enumerate}
\item[(1)]
$s(\gamma_1 \circ \gamma_2) = r(\gamma_2)~,~ r(\gamma_1 \circ
\gamma_2) = r(\gamma_1)$~, for all $(\gamma_1, \gamma_2) \in
\grp^{(2)}$~.

\item[(2)]
$s(x) = r(x) = x$~, for all $x \in \grp^{(0)}$~.

\item[(3)]
$\gamma \circ s(\gamma) = \gamma~,~ r(\gamma) \circ \gamma =
\gamma$~, for all $\gamma \in \grp$~.

\item[(4)]
$(\gamma_1 \circ \gamma_2) \circ \gamma_3 = \gamma_1 \circ
(\gamma_2 \circ \gamma_3)$~.

\item[(5)]
Each $\gamma$ has a two--sided inverse $\gamma^{-1}$ with $\gamma
\gamma^{-1} = r(\gamma)~,~ \gamma^{-1} \gamma = s (\gamma)$~.

Furthermore, only for topological groupoids the inverse map needs be continuous.
It is usual to call $\grp^{(0)} = Ob(\grp)$ {\it the set of objects}
of $\grp$~. For $u \in Ob(\grp)$, the set of arrows $u \lra u$ forms a
group $\grp_u$, called the \emph{isotropy group of $\grp$ at $u$}.
\end{enumerate}

Thus, as is well kown, a topological groupoid is just a groupoid internal to the
\emph{category of topological spaces and continuous maps}. The notion of internal groupoid has proved significant in a number of \htmladdnormallink{fields}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html}, since groupoids generalize bundles of groups, group actions, and \htmladdnormallink{equivalence relations}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}. For a further study of groupoids we refer the reader to ref. \cite{Brown2006}.

\begin{thebibliography}{9}

\bibitem{Brown2006}
R. Brown. (2006). \emph{Topology and Groupoids}. BookSurgeLLC
\end{thebibliography} 

\end{document}
Return to "PlanetPhysics/Locally Compact Groupoid" page.