Talk:PlanetPhysics/Heaviside Formula
Original TeX Content from PlanetPhysics Archive
edit%%% This file is part of PlanetPhysics snapshot of 2011-09-01 %%% Primary Title: Heaviside formula %%% Primary Category Code: 02.30.Uu %%% Filename: HeavisideFormula.tex %%% Version: 1 %%% Owner: pahio %%% Author(s): pahio %%% PlanetPhysics is released under the GNU Free Documentation License. %%% You should have received a file called fdl.txt along with this file. %%% If not, please write to gnu@gnu.org. \documentclass[12pt]{article} \pagestyle{empty} \setlength{\paperwidth}{8.5in} \setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in} \setlength{\headsep}{0.00in} \setlength{\headheight}{0.00in} \setlength{\evensidemargin}{0.00in} \setlength{\oddsidemargin}{0.00in} \setlength{\textwidth}{6.5in} \setlength{\textheight}{9.00in} \setlength{\voffset}{0.00in} \setlength{\hoffset}{0.00in} \setlength{\marginparwidth}{0.00in} \setlength{\marginparsep}{0.00in} \setlength{\parindent}{0.00in} \setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your knowledge % of TeX increases, you will probably want to edit this, but % it should be fine as is for beginners.
% almost certainly you want these \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsfonts}
% used for TeXing text within eps files %\usepackage{psfrag} % need this for including graphics (\includegraphics) %\usepackage{graphicx} % for neatly defining theorems and propositions %\usepackage{amsthm} % making logically defined graphics %\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
Let $P(s)$ and $Q(s)$ be polynomials with the degree of the former less than the degree of the latter.
\begin{itemize} \item If all complex zeroes $a_1,\,a_2,\,\ldots,\,a_n$ of $Q(s)$ are simple, then \begin{align} \mathcal{L}^{-1}\left\{\frac{P(s)}{Q(s)}\right\} \;=\; \sum_{j=1}^n\frac{P(a_j)}{Q'(a_j)}e^{a_jt}. \end{align} \item If the different zeroes $a_1,\,a_2,\,\ldots,\,a_n$ of $Q(s)$ have the multiplicities $m_1,\,m_2,\,\ldots,\,m_n$, respectively, we denote\, $F_j(s) := (s\!-\!a_j)^{m_j}P(s)/Q(s)$;\, then \begin{align} \mathcal{L}^{-1}\left\{\frac{P(s)}{Q(s)}\right\} \;=\; \sum_{j=1}^ne^{a_jt}\sum_{k=0}^{m_j-1}\frac{F_j^{(k)}(a_j)t^{m_j\!-\!1\!-\!k}}{k!(m_j\!-\!1\!-\!k)!}. \end{align} \end{itemize}
A special case of the {\em Heaviside formula} (1) is
$$\mathcal{L}^{-1}\left\{\frac{Q'(s)}{Q(s)}\right\} \;=\; \sum_{j=1}^ne^{a_jt}.\\$$
\textbf{Example.}\, Since the zeros of the binomial $s^4\!+\!4a^4$ are\, $s = (\pm1\!\pm\!i)a$,\, we obtain
$$\mathcal{L}^{-1}\left\{\frac{s^3}{s^4\!+\!4a^4}\right\}
\;=\; \frac{1}{4}\mathcal{L}^{-1}\left\{\frac{4s^3}{s^4\!+\!4a^4}\right\} \;=\; \frac{1}{4}\sum_\pm e^{(\pm 1\pm i)at}
\;=\; \frac{e^{at}+e^{-at}}{2}\cdot\frac{e^{iat}+e^{-iat}}{2}
\;=\; \cosh{at}\,\cos{at}.$$\\
{\em Proof of (1).}\, Without hurting the generality, we can suppose that $Q(s)$ is monic.\, Therefore
$$Q(s) \;=\; (s\!-\!a_1)(s\!-\!a_2)\cdots(s\!-\!s_n).$$
For\, $j = 1,\,2,\;\ldots,\,n$,\, denoting
$$Q(s) \;:=\; (s\!-\!a_j)Q_j(s),$$
one has\, $Q_j(a_j) \neq 0$.\, We have a partial fraction expansion of the form
\begin{align}
\frac{P(s)}{Q(s)} \;=\; \frac{C_1}{s\!-\!a_1}+\frac{C_2}{s\!-\!a_2}+\ldots+\frac{C_n}{s\!-\!a_n}
\end{align}
with constants $C_j$.\, According to the linearity and the formula 1 of the parent entry,
one gets
\begin{align}
\mathcal{L}^{-1}\left\{\frac{P(s)}{Q(s)}\right\} \;=\; \sum_{j=1}^nC_je^{a_jt}.
\end{align}
For determining the constants $C_j$, multiply (3) by $s\!-\!a_j$.\, It yields
$$\frac{P(s)}{Q_j(s)} = C_j+(s\!-\!a_j)\sum_{\nu \neq j}\frac{C_\nu}{s\!-\!a_\nu}.$$
Setting to this identity \,$s := a_j$\, gives the value
\begin{align}
C_j \;=; \frac{P(a_j)}{Q_j(a_j)}.
\end{align}
But since\, $Q'(s) = \frac{d}{ds}((s\!-\!a_j)Q_j(s)) = Q_j(s)\!+\!(s\!-\!a_j)Q_j'(s)$,\, we see that\, $Q'(a_j) = Q_j(a_j)$;\, thus the equation (5) may be written
\begin{align}
C_j ;=\; \frac{P(a_j)}{Q'(a_j)}.
\end{align}
The values (6) in (4) produce the \htmladdnormallink{formula}{http://planetphysics.us/encyclopedia/Formula.html} (1).
\begin{thebibliography}{9} \bibitem{K.V.}{\sc K. V\"ais\"al\"a:} {\em Laplace-muunnos}.\, Handout Nr. 163.\quad Teknillisen korkeakoulun ylioppilaskunta, Otaniemi, Finland (1968). \end{thebibliography}
\end{document}