%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: groupoid representation theorem
%%% Primary Category Code: 00.
%%% Filename: GroupoidRepresentationTheorem.tex
%%% Version: 2
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
%\newcommand{\>}{{\rangle}}
%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
\subsection{Groupoid representation theorem}
We shall briefly consider a main result due to Hahn (1978) that relates
\htmladdnormallink{groupoid}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html} and associated groupoid algebra representations:
\begin{theorem} {\rm (source: \cite{Hahn78, Hahn2}.)}~
Any \htmladdnormallink{representation}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of a groupoid $\grp$ with \htmladdnormallink{Haar measure}{http://planetphysics.us/encyclopedia/HigherDimensionalQuantumAlgebroid.html} $(\nu,
\mu)$ in a separable Hilbert space $\H$ induces a *-algebra
representation $f \mapsto X_f$ of the associated groupoid algebra
$ \Pi \grp, \nu)$ in $L^2 (U_{\grp} , \mu, \H )$ with the
following properties:
\begin{itemize}
\item[(1)]
For any $l,m \in H $ , one has that $\left|<X_f(u
\mapsto l), (u \mapsto m)>\right|\leq \left\|f_l\right\| \left\|l
\right\| \left\|m \right\|$ and
\item[(2)] $M_r (\alpha) X_f = X_{f \alpha \circ r}$, where
$M_r: L^\infty (U_{\grp}, \mu, \H) \longrightarrow \mathcal L (
L^2 (U_{\grp}, \mu, \H))$, with $M_r (\alpha)j = \alpha \cdot j$.
\end{itemize}
Conversely, any *-algebra representation with the above two
properties induces a \htmladdnormallink{groupoid representation}{http://planetphysics.us/encyclopedia/GroupRepresentations.html}, X, as follows:
\begin{equation}
\left\langle X_f , j, k\right\rangle ~ = ~ \int
f(x)[X(x)j(d(x)),k(r(x))d \nu (x)],
\end{equation}
(cf. p. 50 of Hahn, 1978).
\end{theorem}
\subsection{Remarks}
Furthermore, according to Seda (1986, on p.116) the continuity of a
\htmladdnormallink{Haar system}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html} is equivalent to the continuity of the
convolution product $f*g$ for any pair $f, g$ of continuous \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html} with
compact support. One may thus conjecture that similar results
could be obtained for functions with \textit{locally compact}
support in dealing with convolution products of either \htmladdnormallink{locally compact groupoids}{http://planetphysics.us/encyclopedia/LocallyCompactGroupoid.html} or \htmladdnormallink{quantum groupoids}{http://planetphysics.us/encyclopedia/WeakHopfAlgebra.html}. Seda's result also implies
that the convolution algebra $C_{conv}(\grp)$ of a groupoid $\grp$ is
closed with respect to the convolution {*} if and only if the fixed Haar
system associated with the measured groupoid $\grp$ is
\textit{continuous} (Buneci, 2003).
In the case of groupoid algebras of transitive groupoids, Buneci
(2003) showed that representations of a measured groupoid
$({\grp, [\int \nu ^u d \tilde{ \lambda}(u)]=[\lambda]})$ on a
separable Hilbert space $\H$ induce \textit{non-degenerate}
$*$--representations $f \mapsto X_f$ of the associated groupoid
algebra $ \Pi (\grp, \nu,\tilde{\lambda})$ with properties
formally similar to (1) and (2) above. Moreover, as in the case
of \htmladdnormallink{groups}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, \textit{there is a correspondence between the unitary
representations of a groupoid and its associated C*--convolution
algebra representations} (p.182 of Buneci, 2003), the latter
involving however fiber bundles of \htmladdnormallink{Hilbert spaces}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} instead of
single Hilbert spaces. Therefore, groupoid representations appear
as the natural construct for \htmladdnormallink{Algebraic Quantum Field Theories}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} (\htmladdnormallink{AQFT}{http://planetphysics.us/encyclopedia/MetaTheorems.html}) in
which nets of local \htmladdnormallink{observable}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} in Hilbert space fiber
bundles were introduced by Rovelli (1998).
\begin{thebibliography}{9}
\bibitem{GR02}
R. Gilmore: \emph{Lie Groups, Lie Algebras and Some of Their Applications.},
Dover Publs., Inc.: Mineola and New York, 2005.
\bibitem{Hahn78}
P. Hahn: Haar measure for measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}: 1--33(1978).
(Theorem 3.4 on p. 50).
\bibitem{Hahn2}
P. Hahn: The regular representations of measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}:34--72(1978).
\bibitem{HeynLifsctz}
R. Heynman and S. Lifschitz. 1958. \emph{Lie Groups and Lie Algebras}., New York and London: Nelson Press.
\bibitem{HLS2k8}
C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theory, (2008);
arXiv:0709.4364v2 [quant--ph]
\end{thebibliography}
\end{document}