Talk:PlanetPhysics/Gamma Function
Original TeX Content from PlanetPhysics Archive
edit%%% This file is part of PlanetPhysics snapshot of 2011-09-01 %%% Primary Title: gamma function %%% Primary Category Code: 02.30.Gp %%% Filename: GammaFunction.tex %%% Version: 1 %%% Owner: bloftin %%% Author(s): bloftin %%% PlanetPhysics is released under the GNU Free Documentation License. %%% You should have received a file called fdl.txt along with this file. %%% If not, please write to gnu@gnu.org. \documentclass[12pt]{article} \pagestyle{empty} \setlength{\paperwidth}{8.5in} \setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in} \setlength{\headsep}{0.00in} \setlength{\headheight}{0.00in} \setlength{\evensidemargin}{0.00in} \setlength{\oddsidemargin}{0.00in} \setlength{\textwidth}{6.5in} \setlength{\textheight}{9.00in} \setlength{\voffset}{0.00in} \setlength{\hoffset}{0.00in} \setlength{\marginparwidth}{0.00in} \setlength{\marginparsep}{0.00in} \setlength{\parindent}{0.00in} \setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetMath preamble. as your knowledge % of TeX increases, you will probably want to edit this, but % it should be fine as is for beginners.
% almost certainly you want these \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsfonts}
% used for TeXing text within eps files %\usepackage{psfrag} % need this for including graphics (\includegraphics) %\usepackage{graphicx} % for neatly defining theorems and propositions %\usepackage{amsthm} % making logically defined graphics %\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
The gamma function is
$$ \Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt $$
where $x \in \mathbb{C} \setminus \{0, -1, -2, \ldots \}$.
The Gamma function satisfies
$$ \Gamma(x+1) = x \Gamma(x) $$
Therefore, for integer values of $x=n$,
$$ \Gamma(n) = (n-1)! $$
Some values of the gamma function for small arguments are:
$$\begin{array}{cc} \Gamma(1/5)=4.5909 & \Gamma(1/4)=3.6256 \\ \Gamma(1/3)=2.6789 & \Gamma(2/5)=2.2182 \\ \Gamma(3/5)=1.4892 & \Gamma(2/3)=1.3541 \\ \Gamma(3/4)=1.2254 & \Gamma(4/5)=1.1642 \end{array}$$
and the ever-useful $\Gamma(1/2)=\sqrt{\pi}$. These values allow a quick calculation of
$$ \Gamma(n+f) $$
Where $n$ is a natural number and $f$ is any fractional value for which the Gamma \htmladdnormallink{function's}{http://planetphysics.us/encyclopedia/Bijective.html} value is known. Since $\Gamma(x+1)=x\Gamma(x)$, we have
\begin{eqnarray*} \Gamma(n+f) & = & (n+f-1)\Gamma(n+f-1) \\ & = & (n+f-1)(n+f-2)\Gamma(n+f-2) \\ & \vdots & \\ & = & (n+f-1)(n+f-2)\cdots(f)\Gamma(f) \end{eqnarray*}
Which is easy to calculate if we know $\Gamma(f)$.
The gamma function has a meromorphic continuation to the entire complex plane with poles at the non-positive integers. It satisfies the product \htmladdnormallink{formula}{http://planetphysics.us/encyclopedia/Formula.html} $$ \Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n} $$
where $\gamma$ is \htmladdnormallink{Euler's constant}{http://planetphysics.us/encyclopedia/EulerConstant.html}, and the functional equation
$$ \Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin \pi z}. $$
This entry is a derivative of the gamma function article from \htmladdnormallink{PlanetMath}{http://planetmath.org/encyclopedia/GammaFunction.html}. Author of the orginial article: akrowne. History page of the original is \htmladdnormallink{here}{http://planetmath.org/?op=vbrowser&from=objects&id=955}
\end{document}