Talk:PlanetPhysics/Euler 313 Sequence
Original TeX Content from PlanetPhysics Archive
edit%%% This file is part of PlanetPhysics snapshot of 2011-09-01 %%% Primary Title: Euler 313 sequence %%% Primary Category Code: 45.40.-f %%% Filename: Euler313Sequence.tex %%% Version: 1 %%% Owner: bloftin %%% Author(s): bloftin %%% PlanetPhysics is released under the GNU Free Documentation License. %%% You should have received a file called fdl.txt along with this file. %%% If not, please write to gnu@gnu.org. \documentclass[12pt]{article} \pagestyle{empty} \setlength{\paperwidth}{8.5in} \setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in} \setlength{\headsep}{0.00in} \setlength{\headheight}{0.00in} \setlength{\evensidemargin}{0.00in} \setlength{\oddsidemargin}{0.00in} \setlength{\textwidth}{6.5in} \setlength{\textheight}{9.00in} \setlength{\voffset}{0.00in} \setlength{\hoffset}{0.00in} \setlength{\marginparwidth}{0.00in} \setlength{\marginparsep}{0.00in} \setlength{\parindent}{0.00in} \setlength{\parskip}{0.15in}
\usepackage{html}
\usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\begin{document}
For more info on Euler Sequences, notation and convention see the generic entry on \htmladdnormallink{Euler angle sequences}{http://planetphysics.us/encyclopedia/EulerAngleSequence.html}. \\
$ R_{313}(\phi, \theta, \psi) = R_3(\psi) R_1(\theta) R_3(\phi) $ \\
The rotation \htmladdnormallink{matrices}{http://planetphysics.us/encyclopedia/Matrix.html} are
\begin{equation} R_3(\psi) = \left[ \begin{array}{ccc} c_{\psi} & s_{\psi} & 0 \\ -s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{array} \right] \end{equation}
\begin{equation} R_1(\theta) = \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{\theta} & s_{\theta} \\ 0 & -s_{\theta} & c_{\theta} \end{array} \right] \end{equation}
\begin{equation}
R_3(\phi) =
\left[ \begin{array}{ccc}
c_{\phi} & s_{\phi} & 0 \\
-s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1 \end{array} \right]
\end{equation}
Carrying out the multiplication from right to left \\
$
R_1(\theta)R_3(\phi) =
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\theta} & s_{\theta} \\
0 & -s_{\theta} & c_{\theta} \end{array} \right] \left[ \begin{array}{ccc}
c_{\phi} & s_{\phi} & 0 \\
-s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1 \end{array} \right] = \left[ \begin{array}{ccc}
c_{\phi} & s_{\phi} & 0 \\
-s_{\phi} c_{\theta} & c_{\theta} c_{\phi} & s_{\theta} \\
s_{\theta} s_{\phi} & -s_{\theta} c_{\phi} & c_{\theta} \end{array} \right] $ \\
Finaly leaving us with the Euler 313 sequence \\
$ R_3(\psi)R_1(\theta)R_3(\phi) = \left[ \begin{array}{ccc} c_{\psi} c_{\phi} - s_{\psi} s_{\phi} c_{\theta} & c_{\psi} s_{\phi} + s_{\psi} c_{\theta} c_{\phi} & s_{\psi} s_{\theta} \\ -s_{\psi} c_{\phi} - c_{\psi} s_{\phi} c_{\theta} & -s_{\psi} s_{\phi} + c_{\psi} c_{\theta} c_{\phi} & c_{\psi} s_{\theta} \\ s_{\theta} s_{\phi} & -s_{\theta} c_{\phi} & c_{\theta} \end{array} \right] $
\end{document}