Talk:PlanetPhysics/Duality in Mathematics

Original TeX Content from PlanetPhysics Archive

edit
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: duality in mathematics
%%% Primary Category Code: 00.
%%% Filename: DualityInMathematics.tex
%%% Version: 1
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is my default PlanetPhysics.org preamble.

\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]

\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \subsection{Duality in mathematics}
The following is a mathematical topic entry on different
\htmladdnormallink{types}{http://planetphysics.us/encyclopedia/Bijective.html} of \emph{\htmladdnormallink{duality}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}} encountered in different areas of mathematics; accordingly there is
a string of distinct definitions associated with this topic rather than a single, \htmladdnormallink{general definition}{http://planetphysics.us/encyclopedia/PreciseIdea.html},
although some of the linked definitions, that is, \htmladdnormallink{categorical duality}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, are more general than others.

\subsubsection{Duality definitions in mathematics:}
\begin{enumerate}

\item \htmladdnormallink{Categorical duality and Dual category}{http://planetphysics.us/encyclopedia/IndexOfCategoryTheory.html}: reversing arrows
\item \htmladdnormallink{Duality principle}{http://planetphysics.us/encyclopedia/DualityPrinciple.html}
\item Double duality
\item \htmladdnormallink{triality}{http://planetphysics.us/encyclopedia/DualityAndTriality.html} \item \htmladdnormallink{self-duality}{http://planetphysics.us/encyclopedia/DualityAndTriality.html} \item Duality \htmladdnormallink{functors}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, (for example the duality functor $Hom_k(--,k)$ )
\item Poincar\'e duality/Poincar\'e isomorphism
\item Poincar\'e-Lefschetz duality, and \htmladdnormallink{Alexander-Lefschetz duality}{http://planetphysics.us/encyclopedia/DualityAndTriality.html} \item \htmladdnormallink{Alexander duality}{http://planetphysics.us/encyclopedia/DualityAndTriality.html}: J. W. Alexander's duality theory (cca. 1915)
\item \htmladdnormallink{Serre duality}{http://planetphysics.us/encyclopedia/DualityAndTriality.html} :
example- in the proof of the Riemann-Roch theorem for curves.
\item Dualities in logic, example: De Morgan dual, Boolean algebra
\item Stone duality: Boolean algebras and Stone spaces
\item Dual numbers- as in an associative algebra; (almost synonymous with double)
\item \htmladdnormallink{geometric dualities}{http://planetphysics.us/encyclopedia/DualityAndTriality.html}: dual polyhedron, dual of a planar \htmladdnormallink{graph}{http://planetphysics.us/encyclopedia/Cod.html}, duality in order theory,
the Legendre transformation -an application of the duality between points and lines; generalized Legendre, that is, the Legendre-Fenchel transformation.
\item Hamilton--Lagrange duality in theoretical \htmladdnormallink{mechanics}{http://planetphysics.us/encyclopedia/Mechanics.html} and optics
\item \htmladdnormallink{Dual space}{http://planetphysics.us/encyclopedia/DualSpace.html}
\item Dual space example
\item Dual homomorphisms
\item Duality of Projective Geometry
\item Analytic dualities
\item Duals of an algebra/algebraic duality,
for example, dual pairs of Hopf *-algebras and duality of \htmladdnormallink{cross products}{http://planetphysics.us/encyclopedia/VectorProduct.html} of \htmladdnormallink{C*-algebras}{http://planetphysics.us/encyclopedia/VonNeumannAlgebra2.html} \item Tangled, or Mirror, duality:
interchanging \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} and \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} \item Duality as a homological mirror symmetry
\item \htmladdnormallink{cohomology theory}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html} duals: de Rham cohomology $\leftarrow \rightarrow$ Alexander-Spanier cohomology
\item Hodge dual
\item Duality of locally compact groups
\item Pontryagin duality, for locally compact commutative \htmladdnormallink{topological groups}{http://planetphysics.us/encyclopedia/PolishGroup.html} and their linear \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} \item Tannaka-Krein duality: for compact \htmladdnormallink{matrix}{http://planetphysics.us/encyclopedia/Matrix.html} pseudogroups and \htmladdnormallink{non-commutative}{http://planetphysics.us/encyclopedia/AbelianCategory3.html} topological groups; its generalization leads to \htmladdnormallink{quantum groups}{http://planetphysics.us/encyclopedia/QuantumGroup4.html} in \htmladdnormallink{quantum theories}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html}; Tannaka's \htmladdnormallink{theorem}{http://planetphysics.us/encyclopedia/Formula.html} provides the means to reconstruct a compact \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $G$ from its \htmladdnormallink{category of representations}{http://planetphysics.us/encyclopedia/CategoryOfRepresentations.html} $\Pi(G)$; Krein's theorem shows which \htmladdnormallink{categories}{http://planetphysics.us/encyclopedia/Cod.html} arise as a dual object to a compact group; the finite-dimensional representations of Drinfel'd 's quantum
groups form a \htmladdnormallink{braided monoidal category}{http://planetphysics.us/encyclopedia/QuantumCategories.html}, whereas $\Pi(G)$ is a symmetric monoidal category.
\item Tannaka duality: an extension of Tannakian duality by
Alexander Grothendieck to \htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} groups and
Tannakian categories.
\item Contravariant dualities
\item Weak duality, example : weak duality theorem in linear programming;
dual problems in optimization theory
\item \htmladdnormallink{dual codes}{http://planetphysics.us/encyclopedia/DualityAndTriality.html}
\item Duality in Electrical Engineering
\end{enumerate}

\subsubsection{Examples of duals:}

\begin{enumerate}
\item a category $\mathcal{C}$ and its dual $\mathcal{C}^{op}$
\item the category of \htmladdnormallink{Hopf algebras}{http://planetphysics.us/encyclopedia/QuantumGroup4.html} over a \htmladdnormallink{field}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} is (equivalent to) the opposite category of affine group schemes over
$\operatorname{spec} k$
\item Dual Abelian variety
\item Example of a dual space theorem
\item Example of Pontryagin duality
\item initial and final object
\item kernel and cokernel
\item limit and colimit
\item direct sum and product
\end{enumerate}


\begin{thebibliography}{99}
\bibitem{SD-JR1989}
S. Doplicher and J. Roberts. A new duality theory for compact groups.
{\em Inventiones Mathematicae}, 98:157--218, 1989.

\bibitem{AJ-RS1991}
Andr\'e Joyal and Ross Street, An introduction to Tannaka duality and quantum groups, in Part II of Category Theory, Proceedings, Como 1990, eds. A. Carboni, M. C. Pedicchio and G. Rosolini, Lectures Notes in Mathematics No.1488, Springer, Berlin, 1991, 411-492.

\end{thebibliography} 

\end{document}
Return to "PlanetPhysics/Duality in Mathematics" page.