%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: cohomology group theorem
%%% Primary Category Code: 02.
%%% Filename: CohomologyGroupTheorem.tex
%%% Version: 5
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym,color,enumerate}
\usepackage{xypic}
\xyoption{curve}
\usepackage[mathscr]{eucal}
%the next gives two direction arrows at the top of a 2 x 2 matrix
\newcommand{\directs}[2]{\def\objectstyle{\scriptstyle} \objectmargin={0pt}
\xy
(0,4)*+{}="a",(0,-2)*+{\rule{0em}{1.5ex}#2}="b",(7,4)*+{\;#1}="c"
\ar@{->} "a";"b" \ar @{->}"a";"c" \endxy }
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{conjecture}{Conjecture}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\theoremstyle{plain}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\Ce}{\mathsf{C}}
\newcommand{\Q}{\mathsf{Q}}
\newcommand{\grp}{\mathsf{G}}
\newcommand{\dgrp}{\mathsf{D}}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{\operatorname{Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\hdgb}{\boldsymbol{\rho}^\square}
\newcommand{\hdg}{\rho^\square_2}
\renewcommand{\leq}{{\leqslant}}
\renewcommand{\geq}{{\geqslant}}
\def\red{\textcolor{red}}
\def\magenta{\textcolor{magenta}}
\def\blue{\textcolor{blue}}
\def\<{\langle}
\def\>{\rangle}
\begin{document}
The following \htmladdnormallink{theorem}{http://planetphysics.us/encyclopedia/Formula.html} involves Eilenberg-MacLane spaces in \htmladdnormallink{relation}{http://planetphysics.us/encyclopedia/Bijective.html} to \htmladdnormallink{cohomology groups}{http://planetphysics.us/encyclopedia/CohomologyTheoryOnCWComplexes.html} for connected CW-complexes.
\begin{theorem}
Cohomology group theorem for connected CW-complexes (\cite{MJP1999}):
Let $K(\pi,n)$ be Eilenberg-MacLane spaces for connected
CW complexes $X$,
\htmladdnormallink{Abelian groups}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $\pi$ and integers $n \geq 0$. Let us also consider the set of non-basepointed \htmladdnormallink{homotopy}{http://planetphysics.us/encyclopedia/ThinEquivalence.html} classes $[X, K(\pi,n)]$ of non-basepointed maps $\eta :X \to K(\pi,n)$ and the cohomolgy groups $\overline{H}^n(X;\pi)$. Then, there exist the following \emph{\htmladdnormallink{natural isomorphisms}{http://planetphysics.us/encyclopedia/NaturalIsomorphism.html}}:
\begin{equation}
[X, K(\pi,n)] \cong \overline{H}^n(X;\pi),
\end{equation}
\end{theorem}
\begin{proof}
For a complete proof of this theorem the reader is referred to ref.
\cite{MJP1999}
\end{proof}
\subsection{Related remarks:}
\begin{enumerate}
\item In order to determine all cohomology \htmladdnormallink{operations}{http://planetphysics.us/encyclopedia/Cod.html} one needs only to compute the cohomology of all
Eilenberg-MacLane spaces $K(\pi,n)$; (source: ref \cite{MJP1999});
\item When $n = 1$, and $\pi$ is \emph{\htmladdnormallink{non-Abelian}{http://planetphysics.us/encyclopedia/AbelianCategory3.html}}, one still has that $[X,K(\pi ,1)] \cong Hom(\pi_1(X),\pi)/\pi$, that is, the conjugacy class or \htmladdnormallink{representation}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of $\pi_1$ into $\pi$;
\item A derivation of this result based on the fundamental cohomology theorem is also attached.
\end{enumerate}
\begin{thebibliography}{9}
\bibitem{MJP1999}
May, J.P. 1999. \emph{A Concise Course in Algebraic Topology}, The University of Chicago Press: Chicago.,p.173.
\end{thebibliography}
\end{document}