Talk:PlanetPhysics/Categorical Dynamics 2

Original TeX Content from PlanetPhysics Archive

edit
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: complex categorical dynamics
%%% Primary Category Code: 02.
%%% Filename: CategoricalDynamics2.tex
%%% Version: 3
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
% there are many more packages, add them here as you need 
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \subsection{Introduction}

Categorical \htmladdnormallink{dynamics}{http://planetphysics.us/encyclopedia/NewtonianMechanics.html} is a relatively recent area (1958- ) of applied \htmladdnormallink{algebraic topology/}{http://planetphysics.us/encyclopedia/CubicalHigherHomotopyGroupoid.html} theory and \htmladdnormallink{higher dimensional algebra}{http://planetphysics.us/encyclopedia/HigherDimensionalAlgebra2.html} concerned with \htmladdnormallink{system dynamics}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html} that utilizes \htmladdnormallink{concepts}{http://planetphysics.us/encyclopedia/PreciseIdea.html} such as: \htmladdnormallink{categories}{http://planetphysics.us/encyclopedia/Cod.html}, \htmladdnormallink{functors}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, \htmladdnormallink{natural transformations}{http://planetphysics.us/encyclopedia/VariableCategory2.html}, higher dimensional categories and \htmladdnormallink{supercategories}{http://planetphysics.us/encyclopedia/Supercategory.html} to study \htmladdnormallink{motion}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} and dynamic processes in classical/ quantum \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html}, as well as complex or super-complex systems (biodynamics).

A \htmladdnormallink{type}{http://planetphysics.us/encyclopedia/Bijective.html} of categorical dynamics was first introduced and studied by William F. Lawvere for classical systems. Subsequently, a complex class of categorical, dynamic $(M,R)$--systems representing the categorical dynamics involved in metabolic--replication processes in terms of categories of sets and ODE's was reported by \htmladdnormallink{Robert Rosen}{http://planetphysics.us/encyclopedia/RobertRosen.html} in 1970.

One can represent in \htmladdnormallink{square}{http://planetphysics.us/encyclopedia/PiecewiseLinear.html} \htmladdnormallink{categorical diagrams}{http://planetphysics.us/encyclopedia/CategoricalDiagramsDefinedByFunctors.html} the emergence of ultra-complex
dynamics from the super-complex dynamics of human organisms coupled {\em via} social interactions
in characteristic patterns represented by Rosetta biogroupoids, together with the complex--albeit inanimate--systems with `chaos'. With the emergence of the \htmladdnormallink{ultra-complex system}{http://planetphysics.us/encyclopedia/UltraComplexSystems.html} of the human mind-- based on the super-complex human organism-- there is always an associated progression towards higher dimensional algebras from the lower dimensions of human neural network dynamics and the simple algebra of physical dynamics, as shown in the following, essentially \htmladdnormallink{non-commutative}{http://planetphysics.us/encyclopedia/AbelianCategory3.html} categorical diagram of dynamic systems and their transformations.

\subsection{Basic definitions in categorical dynamics}

\begin{definition}
An \emph{ultra-complex system, $U_{CS}$} is defined as an \htmladdnormallink{object}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} \htmladdnormallink{representation}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} in the following \htmladdnormallink{non-commutative diagram}{http://planetphysics.us/encyclopedia/NonCommutativeDynamicModelingDiagrams.html} of dynamic systems and dynamic system \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} or dynamic transformations:

$$ \xymatrix@C=5pc{[SUPER-COMPLEX] \ar [r] ^{(\textbf{Higher
Dim})} \ar[d] _{\Lambda}& [[User:MaintenanceBot|MaintenanceBot]] ([[User talk:MaintenanceBot|discuss]][[Special:Contributions/MaintenanceBot|contribs]])(U_{CS}= ULTRA-COMPLEX) \ar [d]^{onto}\\ COMPLEX&
\ar [l] ^{(\textbf{Generic Map})}[SIMPLE]} $$
\end{definition}

One notes that the above \htmladdnormallink{diagram}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} is indeed not `natural' (that is, it is not commutative) for reasons
related to the emergence of the higher dimensions of the super--complex
(biological/organismic) and/or ultra--complex (psychological/neural network dynamic) levels in comparison with
the low dimensions of either simple (physical/classical) or complex (chaotic) dynamic systems. Moreover,
each type of dynamic system shown in the above diagram is in its turn represented by a distinct diagram
representing its dynamics in terms of transitions occurring in a \htmladdnormallink{state space}{http://planetphysics.us/encyclopedia/StableAutomaton.html} $S$ according to one or several
\htmladdnormallink{transition functions}{http://planetphysics.us/encyclopedia/StableAutomaton.html} or dynamic laws, denoted by $\delta$ for either classical or chaotic physical systems and
by a class of transition functions:
$$\left\{\lambda_{\tau} \right\} _{\tau \in \mathcal{T} },$$

where $\mathcal{T}$ is an index class consisting of dynamic \htmladdnormallink{parameters}{http://planetphysics.us/encyclopedia/Parameter.html} $\tau$ that label the transformation stages of either a super-complex or an ultra-complex system, thus keeping track of the switches that occur between dynamic laws in highly complex dynamic systems with \htmladdnormallink{variable topology}{http://planetphysics.us/encyclopedia/VariableNetwork.html}. Therefore, in the latter two cases, \htmladdnormallink{highly complex systems}{http://planetphysics.us/encyclopedia/HighlyComplexSystems.html} are in fact represented, respectively, by \htmladdnormallink{functor categories}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} and \htmladdnormallink{supercategories}{http://planetphysics.us/encyclopedia/SuperCategory6.html} of diagrams because categorical diagrams can be defined as functors. An important class of the simpler dynamic systems can be represented by \htmladdnormallink{algebraic categories}{http://planetphysics.us/encyclopedia/CategoryOfLogicAlgebras.html}; an example of such class of simple dynamic systems is that endowed with \emph{\htmladdnormallink{monadic}{http://planetphysics.us/encyclopedia/CoIntersections.html} dynamics} represented by the category of Eilenberg-Moore algebras.

\end{document}
Return to "PlanetPhysics/Categorical Dynamics 2" page.