%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: canonical commutation and anti-commutation relations: their representations
%%% Primary Category Code: 00.
%%% Filename: CanonicalCommutationAndAntiCommutationRepresentations.tex
%%% Version: 29
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
This is a contributed topic on \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of canonical commutation and \htmladdnormallink{anti-commutation relations}{http://planetphysics.us/encyclopedia/AntiCommutationRelations.html}.
\subsection{Representations of Canonical Commutation Relations (CCR)}
\subsubsection{Canonical Commutation Relations:}
Consider a \htmladdnormallink{Hilbert space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $\mathcal{H}$. For a \htmladdnormallink{linear operator}{http://planetphysics.us/encyclopedia/Commutator.html} {\bf O} on $\mathcal{H}$, we denote its \htmladdnormallink{domain}{http://planetphysics.us/encyclopedia/Bijective.html} by {\bf $D(O).$} With
\htmladdnormallink{Arai's notation}{http://planetphysics.org/?op=getobj&from=lec&id=124}, a set $\left\{Q_j,P_j\right\} ^d_{j =1}$ of self-adjoint \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} on $\mathcal{H}$ (such as the \htmladdnormallink{position}{http://planetphysics.us/encyclopedia/Position.html} and \htmladdnormallink{momentum}{http://planetphysics.us/encyclopedia/Momentum.html} operators, for example) is called a \emph{representation of the canonical commutation relations (CCR) with $d$ degrees of freedom} if there exists a dense subspace $\mathcal{D}$ of $\mathcal{H}$ such that:
\begin{itemize}
\item (i) $\mathcal{D} \subset \bigcap^d_{j,k=1}[D(Q_jP_k) \bigcap D(P_kQ_j)\bigcap D(Q_jQ_k) \bigcap D(P_jP_k)],$ and
\item (ii) $Q_j$ and $P_j$ satisfy the CCR \htmladdnormallink{relations}{http://planetphysics.us/encyclopedia/Bijective.html}:
$$[Q_j,P_k] = i\hbar \delta_{jk},$$
$$[Q_j,Q_k] = 0, \, [P_j,P_k] = 0, \, j, k = 1,...,d,$$
on $\mathcal{D}$, where $\hbar$ is the Planck constant $h$ divided by $2 \pi$.
\end{itemize}
A standard representation of the CCR is the well-known Schr\"odinger representation $\left\{Q^S_j,P_j^S \right\}^d_j=1 $ which is given by:
$$\mathcal{H} = L^2(\mathbb{R}^d), \, Q^S_j= x_j, $$
the multiplication \htmladdnormallink{operator}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} by the j-th coordinate $x_j$ , with
$P^S_j = (-1) i \hbar D_j$ , with $D_j$ being the generalized partial differential operator in $x_j$ , and with $J\mathcal{D} = \mathcal{S}(\mathbb{R}^d)$ being the Schwartz space of rapidly decreasing $C_{\infty}$ \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html} on
$\mathbb{R}^d$, or $\mathcal{D} = C_0^{\infty}(\mathbb{R}^d)$, that is the space of $C^{\infty}$ functions on $\mathbb{R}^d$ with compact support.
\subsubsection{CCR Representations in a Non-Abelian Gauge Theory}
One can provide a representation of canonical commutation relations in a
\htmladdnormallink{non-Abelian gauge theory}{http://planetphysics.org/?op=getobj&from=lec&id=124} defined on a non-simply connected region in the \htmladdnormallink{two-dimensional}{http://planetphysics.us/encyclopedia/CoriolisEffect.html} Euclidean space. Such representations were shown to provide also a mathematical expression for the \htmladdnormallink{non-Abelian}{http://planetphysics.us/encyclopedia/AbelianCategory3.html}, Aharonov-Bohm effect
(\cite{GMS81}).
\subsection{Canonical Anticommutation Relations (CAR)}
\begin{thebibliography}{9}
\bibitem{AA93a}
Arai A., Characterization of anticommutativity of self-adjoint operators in connection with Clifford algebra and applications,
{\em Integr. Equat. Oper. Th.}, 1993, v.17, 451--463.
\bibitem{AA93b}
Arai A., Commutation properties of anticommuting self-adjoint operators, spin representation and Dirac operators, {\em Integr. Equat. Oper. Th.}, 1993, v.16, 38--63.
\bibitem{AA94}
Arai A., Analysis on anticommuting self--adjoint operators, {\em Adv. Stud. Pure Math.}, 1994, v.23, 1--15.
\bibitem{AA95}
Arai A., Scaling limit of anticommuting self-adjoint operators and applications to Dirac operators, Integr. Equat. Oper. Th., 1995, v.21, 139--173.
\bibitem{AA87}
Arai A., Some remarks on scattering theory in supersymmetric quantum mechanics, {\em J. Math. Phys.}, 1987, V.28, 472--476.
\bibitem{GMS81}
Goldin G.A., Menikoff R. and Sharp D.H., Representations of a local current algebra in nonsimply connected space and the Aharonov--Bohm effect, J. Math. Phys., 1981, v.22, 1664--1668.
\bibitem{JVN31}
von Neumann J., Die Eindeutigkeit der Schr\"odingerschen Operatoren,
{\em Math. Ann.}, 1931, v.104, 570--578.
\bibitem{PS90}
Pedersen S., Anticommuting self--adjoint operators, J. Funct. Anal., 1990, V.89, 428--443.
\bibitem{PCR67}
Putnam C. R., Commutation Properties of Hilbert Space Operators, Springer, Berlin, 1967.
\bibitem{RM-SB72}
Reed M. and Simon B., {\em Methods of Modern Mathematical Physics}., vol.I, Academic Press, New York, 1972.
\end{thebibliography}
\end{document}