%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: CW-complex of spin networks (CWSN)
%%% Primary Category Code: 03.
%%% Filename: CWComplexOfSpinNetworksCWSN.tex
%%% Version: 2
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\begin{definition}
A \emph{$CW$ complex}, denoted as $X_c$, is a special \htmladdnormallink{type}{http://planetphysics.us/encyclopedia/Bijective.html} of \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} space ($X$) which is the \emph{\htmladdnormallink{union}{http://planetphysics.us/encyclopedia/ModuleAlgebraic.html}} of an expanding sequence of subspaces $X^n$, such that, inductively, the first member of this expansion sequence is $X^0$ -- a discrete set of points called the \emph{vertices} of $X$, and $X^{n+1}$ is the \emph{\htmladdnormallink{pushout}{http://planetphysics.us/encyclopedia/Pushout.html}} obtained from $X^n$ by attaching disks $D^{n+1}$ along ``attaching maps'' $j: S^n \rightarrow X^n$. Each resulting map $D^{n+1} \longrightarrow X$ is called a \emph{cell}. (The subscript ``$c$'' in $X_c$, stands for the fact that this (CW) type of topological space $X$ is called \emph{cellular}, or ``made of cells''). The subspace $X^n$ is called the ``$n$-skeleton'' of $X$.
Pushouts, expanding sequence and unions are here understood in the topological sense, with the compactly generated
topologies (\emph{viz.} p.71 in P. J. May, 1999 \cite{MJP1999}).
\end{definition}
\textbf{Examples of a $CW$ complex}:
\begin{enumerate}
\item A \htmladdnormallink{graph}{http://planetphysics.us/encyclopedia/Cod.html} is a one--dimensional $CW$ complex.
\item \emph{\htmladdnormallink{spin networks}{http://planetphysics.us/encyclopedia/SimplicialCWComplex.html}} are represented as graphs and they are therefore also one--dimensional $CW$ complexes.
The transitions between \emph{spin networks} lead to \emph{\htmladdnormallink{spin foams}{http://planetphysics.us/encyclopedia/SimplicialCWComplex.html}}, and spin foams may be thus regarded
as a higher dimensional $CW$ complex (of dimension $d \geq 2$).
\end{enumerate}
\emph{Note.}
The \htmladdnormallink{concepts}{http://planetphysics.us/encyclopedia/PreciseIdea.html} of {\em spin networks} and {\em spin foams} were recently developed in the context
of \htmladdnormallink{mathematical physics}{http://planetphysics.us/encyclopedia/PhysicalMathematics2.html} as part of the more general effort of attempting to formulate mathematically a concept of \emph{\htmladdnormallink{quantum state space}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html}} which is also applicable, or relates to \emph{\htmladdnormallink{quantum gravity}{http://planetphysics.us/encyclopedia/LQG2.html}} \htmladdnormallink{spacetimes}{http://planetphysics.us/encyclopedia/SR.html}. The {\em \htmladdnormallink{spin}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} \htmladdnormallink{observable}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html}}-- which is fundamental in quantum theories-- has no corresponding concept in \htmladdnormallink{classical mechanics}{http://planetphysics.us/encyclopedia/MathematicalFoundationsOfQuantumTheories.html}. (However, classical \emph{momenta} (both linear and angular) have corresponding \htmladdnormallink{quantum observable}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html} \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} that are quite different in form, with their eigenvalues taking on different sets of values in \htmladdnormallink{quantum mechanics}{http://planetphysics.us/encyclopedia/QuantumParadox.html} than the ones that might be expected from classical mechanics for the `corresponding' classical observables); the spin is an \emph{intrinsic} observable of all massive \htmladdnormallink{quantum `particles',}{http://planetphysics.us/encyclopedia/QuantumParticle.html} such as electrons, protons, \htmladdnormallink{neutrons}{http://planetphysics.us/encyclopedia/Pions.html}, atoms, as well as of all \htmladdnormallink{field}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html} quanta, such as photons, \emph{\htmladdnormallink{gravitons}{http://planetphysics.us/encyclopedia/BoseEinsteinStatistics.html}}, \htmladdnormallink{gluons}{http://planetphysics.us/encyclopedia/ExtendedQuantumSymmetries.html}, and so on; furthermore, every quantum `particle' has also associated with it a de Broglie \htmladdnormallink{wave}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html}, so that it cannot be realized, or `pictured', as any kind of classical `body'. For massive quantum particles such as electrons, protons, neutrons, atoms, and so on, the spin property has been initially observed for atoms by applying a \htmladdnormallink{magnetic field}{http://planetphysics.us/encyclopedia/NeutrinoRestMass.html} as in the famous Stern-Gerlach experiment, (although the applied field may also be electric or gravitational, (see for example \cite{WH52})). All such spins interact with each other thus giving rise to ``spin networks'', which can be mathematically represented as in the second example above; in the case of electrons, protons and neutrons such interactions are magnetic dipolar ones, and in an over-simplified, but not a physically accurate `picture', these are often thought of as `very tiny magnets--or magnetic dipoles--that line up, or flip up and down together, etc'.
\begin{remark}
An earlier, alternative definition of CW complex is also in use that may have
advantages in certain applications where the concept of pushout might not be apparent; on the other hand
as pointed out in \cite{MJP1999} the \textbf{Definition 0.1} presented here has advantages in proving
results, including generalized, or extended \htmladdnormallink{theorems}{http://planetphysics.us/encyclopedia/Formula.html} in
\htmladdnormallink{Algebraic Topology}{http://planetmath.org/?op=getobj&from=lec&id=73},
(as for example in \cite{MJP1999}).
\end{remark}
\begin{thebibliography}{99}
\bibitem{MJP1999}
May, J.P. 1999, \emph{A Concise Course in Algebraic Topology.}, The University of Chicago Press: Chicago.
\bibitem{CRFM1980}
C.R.F. Maunder. 1980, \htmladdnormallink{Algebraic Topology.}{http://planetmath.org/?op=getobj&from=books&id=181},
Dover Publications, Inc.: Mineola, New York.
\bibitem{JJR1998}
Joseph J. Rothman. 1998,
\htmladdnormallink{An Introduction to Algebraic Topology}{http://planetmath.org/?op=getobj&from=books&id=172},
Springer-Verlag: Berlin
\bibitem{WH52}
Werner Heisenberg. {\em The Physical Principles of Quantum Theory}. New York: Dover Publications, Inc.(1952), pp.39-47.
\bibitem{BF92}
F. W. Byron, Jr. and R. W. Fuller. {\em Mathematical Principles of Classical and Quantum Physics.}, New York: Dover Publications, Inc. (1992).
\end{thebibliography}
\end{document}