%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Anabelian geometry and algebraic topology
%%% Primary Category Code: 02.
%%% Filename: AnabelianGeometryAndAlgebraicTopology.tex
%%% Version: 7
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your
% almost certainly you want these
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
This is a new topic in which the \htmladdnormallink{Anabelian Geometry}{http://planetphysics.us/encyclopedia/IsomorphismClass.html} approach will be defined and compared with other appoaches that are disticnt from it such as
\htmladdnormallink{non-Abelian algebraic topology}{http://planetphysics.us/encyclopedia/ModuleAlgebraic.html} and \emph{\htmladdnormallink{noncommutative geometry}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html}}{ http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html}. The latter two \htmladdnormallink{fields}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html} have already made an impact on \htmladdnormallink{quantum theories}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html} that seek a new setting beyond SUSY--the Standard Model of modern physics. Moreover, it is also possible to consider in this topic novel, possible approaches to relativity theories, especially to \htmladdnormallink{general relativity}{http://planetphysics.us/encyclopedia/SR.html} on \htmladdnormallink{spacetimes}{http://planetphysics.us/encyclopedia/SR.html} that are more general than pseudo- or quasi- Riemannian `spaces'. Furthermore, other \htmladdnormallink{theoretical physics}{http://planetphysics.us/encyclopedia/PhysicalMathematics2.html} developments may expand specific Anabelian Geometry applications to \htmladdnormallink{quantum geometry}{http://planetphysics.us/encyclopedia/TriangulationMethodsForQuantizedSpacetimes2.html} and \htmladdnormallink{Quantum Algebraic Topology}{http://planetphysics.us/encyclopedia/TriangulationMethodsForQuantizedSpacetimes2.html}.
\section{Anabelian Geometry}
The area of mathematics called {\em Anabelian Geometry (AAG)} began with Alexander Grothendieck's introduction of the term in his seminal and influential \htmladdnormallink{work}{http://planetphysics.us/encyclopedia/Work.html} {\em ``Esquisse d'un Programme''} $[1]$ produced in 1980. The basic setting of his anabelian geometry is that of the \htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} \htmladdnormallink{fundamental group}{http://planetphysics.us/encyclopedia/SingularComplexOfASpace.html} $\mathcal{G}$ of an \htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} variety $X$ (which is a basic \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} in Algebraic Geometry), and also possibly a more generally defined, but related, geometric \htmladdnormallink{object}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}. The {\em algebraic fundamental group}, $\mathcal{G}$, in this case determines how the \htmladdnormallink{algebraic variety}{http://planetphysics.us/encyclopedia/IsomorphismClass.html} $X$ can be mapped into, or linked to, another geometric \htmladdnormallink{object}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $Y$, assuming that $\mathcal{G}$ is {\em \htmladdnormallink{non-Abelian}{http://planetphysics.us/encyclopedia/AbelianCategory3.html}} or \htmladdnormallink{noncommutative}{http://planetphysics.us/encyclopedia/AbelianCategory3.html}. This specific approach differs significantly, of course, from that of Noncommutative Geometry introduced by Alain Connes. It also differs from the main-stream \htmladdnormallink{nonabelian algebraic topology}{http://planetphysics.us/encyclopedia/NAQAT2.html} (NAAT)'s generalized approach to topology in terms of \htmladdnormallink{groupoids}{http://planetphysics.us/encyclopedia/GroupoidHomomorphism2.html} and \htmladdnormallink{fundamental groupoids}{http://planetphysics.us/encyclopedia/CubicalHigherHomotopyGroupoid.html} of a \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} space (that generalize the \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} of fundamental space), as well as from that of \htmladdnormallink{higher dimensional algebra}{http://planetphysics.us/encyclopedia/InfinityGroupoid.html} (\htmladdnormallink{HDA}{http://planetphysics.us/encyclopedia/InfinityGroupoid.html}). Thus, the fundamental \htmladdnormallink{anabelian}{http://planetphysics.us/encyclopedia/IsomorphismClass.html} question posed by Grothendieck was, and is:
{\em ``how much information about the isomorphism class of the variety $X$ is contained in the knowledge of the etale fundamental group?''} (on p. 2 in $$http://www.math.jussieu.fr/~leila/SchnepsLM.pdf$$ ).
At this point, stepping down from the general, abstract setting of the Anabelian Geometry it would be useful to consider a specific, concrete example.
\subsection{A Concrete Example}
In the case of curves, {\em $C$}, these could be either {\em affine} (as in \htmladdnormallink{Einstein's}{http://planetphysics.us/encyclopedia/AlbertEinstein.html} or Weyl's approaches to General Relativity), or {\em projective}, as in a variety $V$. Consider here a specific hyperbolic curve {\em $H$}, that is defined as the complement of $n$ points in a {\em projective algebriac curve of genus $g$}, which is assumed to be both smooth and irreducible, and also defined over a \htmladdnormallink{field}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} $K$ (that is finitely generated over its {\em prime field}) such that: $$2-2g-n < 0$$. Grothendieck conjectured in 1979 that the \htmladdnormallink{fundamental group}{http://planetphysics.us/encyclopedia/SingularComplexOfASpace.html} $\mathcal{G}$ of {\em $C$}, which is a {\em profinite \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}}, determines the curve {\em $C$} itself, or that the {\em \htmladdnormallink{isomorphism}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html} class of $\mathcal{G}$ determines the \htmladdnormallink{isomorphism class}{http://planetphysics.us/encyclopedia/IsomorphismClass.html} of {\em $C$}; this also points towards a conjecture regarding the {\em \htmladdnormallink{natural equivalence}{http://planetphysics.us/encyclopedia/IsomorphismClass.html}} $\eta$ of their corresponding \htmladdnormallink{categories}{http://planetphysics.us/encyclopedia/Cod.html}.
\subsection{Generalizations}
Much more elaborate, generalizations of Grothendieck's Anabelian Geometry are posible by considering higher-dimensional, $pro-l$, $Hom$-- versions, and so on, involving for example \htmladdnormallink{fundamental groupoids}{http://planetphysics.us/encyclopedia/CubicalHigherHomotopyGroupoid.html} and fundamental \htmladdnormallink{double groupoids}{http://planetphysics.us/encyclopedia/ThinEquivalence.html} $[2]$.
\subsection{References}
1. \htmladdnormallink{Alexander Grothendieck}{http://planetphysics.us/encyclopedia/AlexanderGrothendieck.html}, 1984. "Esquisse d'un Programme", (1984 manuscript), published in "Geometric Galois Actions", L. Schneps, P. Lochak, eds., London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997, pp. 5--48; English transl., ibid., pp. 243--283
2. Jochen Koenigsmann.2001. Anabelian geometry over almost arbitrary fields
$http://www.uni-math.gwdg.de/tschinkel/SS04/koenigsmann2.pdf$
3. S. Mochizuki, H. Nakamura, A. Tamagawa. ``The Grothendieck Conjecture
on the fundamental groups of algebraic curves'', {\em Sugaku Expositions}
{\bf 14}(1), (2001), 31--53.
{\bf\htmladdnormallink{...work}{http://planetphysics.us/encyclopedia/Work.html} in progress}
\end{document}