Talk:PlanetPhysics/2 Category

Original TeX Content from PlanetPhysics Archive

edit
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: 2-category
%%% Primary Category Code: 03.
%%% Filename: 2Category.tex
%%% Version: 11
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

 % this is the default PlanetPhysics preamble. as your 
% almost certainly you want these

\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\newcommand{\<}{{\langle}}

%\newcommand{\>}{{\rangle}}

%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}

\def\baselinestretch{1.1}


\hyphenation{prod-ucts}

%\grpeometry{textwidth= 16 cm, textheight=21 cm}

\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}

%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}

\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 \subsection{Definition 0.1}
A small 2-category, $\mathcal{C}_2$, is the first of higher order \htmladdnormallink{categories}{http://planetphysics.us/encyclopedia/Cod.html} constructed as follows.

\begin{enumerate}
\item define \textbf{Cat} as the category of \htmladdnormallink{small categories}{http://planetphysics.us/encyclopedia/Cod.html} and \htmladdnormallink{functors}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} \item define a class of \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $A, B,...$ in $\mathcal{C}_2$ called `$0$- \emph{cells}'
\item for all `$0$-cells' $A$, $B$, consider a set denoted as ``$\mathcal{C}_2 (A,B)$'' that is defined as
$\hom_{\mathcal{C}_2}(A,B)$, with the elements of the latter set being the functors between the $0$-cells $A$ and $B$; the latter is then organized as a small category whose \htmladdnormallink{$2$-`morphisms'}{http://planetphysics.us/encyclopedia/FunctorCategories.html}, or `$1$-cells' are defined by the \htmladdnormallink{natural transformations}{http://planetphysics.us/encyclopedia/VariableCategory2.html} $\eta: F \to G$ for any two \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of $\mathcal{C}at$, (with $F$ and $G$ being functors between the `$0$-cells' $A$ and $B$, that is, $F,G: A \to B$); as the `$2$-cells' can be considered as `2-morphisms' between 1-morphisms, they are also written as: $\eta : F \Rightarrow G$, and are depicted as labelled faces in the plane determined by their \htmladdnormallink{domains}{http://planetphysics.us/encyclopedia/Bijective.html} and \htmladdnormallink{codomains}{http://planetphysics.us/encyclopedia/Bijective.html} \item the $2$-categorical \htmladdnormallink{composition}{http://planetphysics.us/encyclopedia/Cod.html} of $2$-morphisms is denoted as ``$\bullet$'' and is called the \emph{\htmladdnormallink{vertical composition}{http://planetphysics.us/encyclopedia/HorizontalIdentities.html}}
\item a \emph{\htmladdnormallink{horizontal composition}{http://planetphysics.us/encyclopedia/HorizontalIdentities.html}}, ``$\circ$'', is also defined for all triples of $0$-cells, $A$, $B$ and
$C$ in $\mathcal{C}at$ as the functor $$\circ: \mathcal{C}_2(B,C) \times \mathcal{C}_2(A,B) = \mathcal{C}_2(A,C),$$
which is \emph{associative}
\item the \htmladdnormallink{identities}{http://planetphysics.us/encyclopedia/Cod.html} under horizontal composition are the identities of the $2$-cells of $1_X$
for any $X$ in $\mathcal{C}at$
\item for any object $A$ in $\mathcal{C}at$ there is a functor from the one-object/one-arrow category
$\textbf{1}$ (terminal object) to $\mathcal{C}_2(A,A)$.
\end{enumerate}


\subsubsection{Examples of 2-categories}

\begin{enumerate}
\item The $2$-category $\mathcal{C}at$ of small categories, functors, and natural transformations;
\item The $2$-category $\mathcal{C}at(\mathcal{E})$ of \emph{internal categories in any category $\mathcal{E}$ with
finite limits}, together with the internal functors and the internal natural transformations between such internal
functors;
\item When $\mathcal{E} = \mathcal{S}et$, this yields again the category $\mathcal{C}at$, but if
$\mathcal{E} = \mathcal{C}at$, then one obtains the 2-category of small \emph{\htmladdnormallink{double categories}{http://planetphysics.us/encyclopedia/HorizontalIdentities.html}};
\item When $\mathcal{E} = \textbf{Group}$, one obtains the \emph{$2$-category of \htmladdnormallink{crossed modules}{http://planetphysics.us/encyclopedia/CubicalHigherHomotopyGroupoid.html}}.
\end{enumerate}

\textbf{Remarks:}
\begin{itemize}
\item In a manner similar to the (alternative) definition of small categories, one can
describe $2$-categories in terms of $2$-arrows. Thus, let us consider a set with two defined \htmladdnormallink{operations}{http://planetphysics.us/encyclopedia/Cod.html} $\otimes$, $\circ$, and also with units such that each operation endows the set with the structure of a
(strict) category. Moreover, one needs to assume that all $\otimes$-units are also $\circ$-units, and that an associativity \htmladdnormallink{relation}{http://planetphysics.us/encyclopedia/Bijective.html} holds for the two products:
$$(S \otimes T ) \circ (S \otimes T) = (S \circ S) \otimes (T \circ T)$$

\item A $2$-category is an example of a \htmladdnormallink{supercategory}{http://planetphysics.us/encyclopedia/SuperCategory6.html} with just two \htmladdnormallink{composition laws}{http://planetphysics.us/encyclopedia/Identity2.html}, and it
is therefore an $\S_1$-supercategory, because the $\S_0$ supercategory is defined as a standard `$1$'-category subject only to the \htmladdnormallink{ETAC axioms}{http://planetphysics.us/encyclopedia/ETACAxioms.html}.

\end{itemize}

\end{document}
Return to "PlanetPhysics/2 Category" page.