https://en.wikiversity.org/w/index.php?title=Talk:MyOpenMath/Solutions/Maxwell%27s_integral_equations&oldid=2174778
If r > R : ε 0 ∮ E → ⋅ d A → ⏟ 4 π r 2 E = ∫ ρ d τ ⏟ 4 π R 3 3 ρ 0 {\displaystyle {\text{If }}r>R:\varepsilon _{0}\underbrace {\oint {\vec {E}}\cdot d{\vec {A}}} _{4\pi r^{2}E}=\underbrace {\int \rho d\tau } _{{\frac {4\pi R^{3}}{3}}\rho _{0}}}
If r < R : ε 0 ∮ E → ⋅ d A → ⏟ 4 π r 2 E = ∫ ρ d τ ⏟ 4 3 π r 3 ρ 0 {\displaystyle {\text{If }}r<R:\varepsilon _{0}\underbrace {\oint {\vec {E}}\cdot d{\vec {A}}} _{4\pi r^{2}E}\quad =\underbrace {\int \rho d\tau } _{{\frac {4}{3}}\pi r^{3}\rho _{0}}}
If r > R : ε 0 ∮ E → ⋅ d A → ⏟ 2 π r L E = ρ 0 ∫ d τ ⏟ π R 2 L ρ 0 {\displaystyle {\text{If }}r>R:\varepsilon _{0}\underbrace {\oint {\vec {E}}\cdot d{\vec {A}}} _{2\pi rLE}=\underbrace {\rho _{0}\int d\tau } _{\pi R^{2}L\rho _{0}}}
If r < R : ε 0 ∮ E → ⋅ d A → ⏟ 2 π r L E = ρ 0 ∫ d τ ⏟ π r 2 L ρ 0 {\displaystyle {\text{If }}r<R:\varepsilon _{0}\underbrace {\oint {\vec {E}}\cdot d{\vec {A}}} _{2\pi rLE}=\underbrace {\rho _{0}\int d\tau } _{\pi r^{2}L\rho _{0}}}
ε 0 ∮ E → ⋅ d A → ⏟ A ( E + − E − ) = ρ 0 ∫ d τ ⏟ A b ρ 0 = A σ , {\displaystyle \varepsilon _{0}\underbrace {\oint {\vec {E}}\cdot d{\vec {A}}} _{A\left(E_{+}-E_{-}\right)}=\underbrace {\rho _{0}\int d\tau } _{Ab\rho _{0}=A\sigma },}
where: { E → + = E ( x 0 + L / 2 ) x ^ E → − = E ( x 0 − L / 2 ) x ^ {\displaystyle \left\{{\begin{array}{l l}{\vec {E}}_{+}=&E(x_{0}+L/2){\hat {x}}\\{\vec {E}}_{-}=&E(x_{0}-L/2){\hat {x}}\end{array}}\right.}
→ ε 0 ∂ E x ∂ x = ρ ( x ) {\displaystyle \rightarrow \varepsilon _{0}{\frac {\partial E_{x}}{\partial x}}=\rho (x)}
∮ B → ⋅ d l → ⏟ B z L = μ 0 N I {\displaystyle \underbrace {\oint {\vec {B}}\cdot d{\vec {l}}} _{B_{z}L}=\mu _{0}NI}
∮ E → ⋅ d l → ⏟ E θ 2 π r = − d d t ∫ B → ⋅ d A → ⏟ B A {\displaystyle \underbrace {\oint {\vec {E}}\cdot d{\vec {l}}} _{E_{\theta }2\pi r}=-{\frac {d}{dt}}\underbrace {\int {\vec {B}}\cdot d{\vec {A}}} _{BA}}
μ 0 ( ∫ S J → ⋅ d A → + ε 0 d d t ∫ S E → ⋅ d A → ) {\displaystyle \mu _{0}\left(\int _{S}{\vec {J}}\cdot d{\vec {A}}+\varepsilon _{0}{\frac {d}{dt}}\int _{S}{\vec {E}}\cdot d{\vec {A}}\right)}
∮ B → ⋅ d l → ⏟ B θ 2 π r = μ 0 N I {\displaystyle \underbrace {\oint {\vec {B}}\cdot d{\vec {l}}} _{B_{\theta }2\pi r}=\mu _{0}NI}