Structures on manifolds
Wikibooks Topology has a page on the topic of Categories of Manifolds. |
There are three main types of structures important on manifolds. The foundational geometric structures are piecewise linear, mostly studied in geometric topology, and smooth manifold structures on a given topological manifold, which are the concern of differential topology as far as classification goes. Building on a smooth structure, there are:
- various G-structures, which relate the tangent bundle to some subgroup G of the general linear group
- structures defined by holonomy conditions.
These can be related, and (for example for Calabi–Yau manifolds) their existence can be predicted using discrete invariants.