Wedge with Boundary Tractions
edit
Williams' Asymptotic Solution
edit
Stresses near the notch corner
edit
Adding equations (9) and (10),
(13)
a
3
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
+
a
4
(
λ
−
1
)
cos
{
(
λ
−
1
)
α
}
=
0
{\displaystyle {\text{(13)}}\qquad a_{3}(\lambda +1)\cos\{(\lambda +1)\alpha \}+a_{4}(\lambda -1)\cos\{(\lambda -1)\alpha \}=0}
Subtracting equation (10) from (9),
(14)
a
1
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
+
a
2
(
λ
−
1
)
sin
{
(
λ
−
1
)
α
}
=
0
{\displaystyle {\text{(14)}}\qquad a_{1}(\lambda +1)\sin\{(\lambda +1)\alpha \}+a_{2}(\lambda -1)\sin\{(\lambda -1)\alpha \}=0}
Adding equations (11) and (12),
(15)
a
1
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
+
a
2
(
λ
+
1
)
cos
{
(
λ
−
1
)
α
}
=
0
{\displaystyle {\text{(15)}}\qquad a_{1}(\lambda +1)\cos\{(\lambda +1)\alpha \}+a_{2}(\lambda +1)\cos\{(\lambda -1)\alpha \}=0}
Subtracting equation (12) from (11),
(16)
a
3
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
+
a
4
(
λ
+
1
)
sin
{
(
λ
−
1
)
α
}
=
0
{\displaystyle {\text{(16)}}\qquad a_{3}(\lambda +1)\sin\{(\lambda +1)\alpha \}+a_{4}(\lambda +1)\sin\{(\lambda -1)\alpha \}=0}
Therefore, the two independent sets of equations are
(17)
[
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
(
λ
−
1
)
sin
{
(
λ
−
1
)
α
}
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
(
λ
+
1
)
cos
{
(
λ
−
1
)
α
}
]
[
a
1
a
2
]
=
[
0
0
]
{\displaystyle {\text{(17)}}\qquad {\begin{bmatrix}(\lambda +1)\sin\{(\lambda +1)\alpha \}&(\lambda -1)\sin\{(\lambda -1)\alpha \}\\(\lambda +1)\cos\{(\lambda +1)\alpha \}&(\lambda +1)\cos\{(\lambda -1)\alpha \}\end{bmatrix}}{\begin{bmatrix}a_{1}\\a_{2}\end{bmatrix}}={\begin{bmatrix}0\\0\end{bmatrix}}}
and
(18)
[
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
(
λ
−
1
)
cos
{
(
λ
−
1
)
α
}
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
(
λ
+
1
)
sin
{
(
λ
−
1
)
α
}
]
[
a
3
a
4
]
=
[
0
0
]
{\displaystyle {\text{(18)}}\qquad {\begin{bmatrix}(\lambda +1)\cos\{(\lambda +1)\alpha \}&(\lambda -1)\cos\{(\lambda -1)\alpha \}\\(\lambda +1)\sin\{(\lambda +1)\alpha \}&(\lambda +1)\sin\{(\lambda -1)\alpha \}\end{bmatrix}}{\begin{bmatrix}a_{3}\\a_{4}\end{bmatrix}}={\begin{bmatrix}0\\0\end{bmatrix}}}
Equations (17) have a non-trivial solution only if
(19)
λ
sin
(
2
α
)
+
sin
(
2
λ
α
)
=
0
{\displaystyle {\text{(19)}}\qquad \lambda \sin(2\alpha )+\sin(2\lambda \alpha )=0}
Equations (18) have a non-trivial solution only if
(20)
λ
sin
(
2
α
)
−
sin
(
2
λ
α
)
=
0
{\displaystyle {\text{(20)}}\qquad \lambda \sin(2\alpha )-\sin(2\lambda \alpha )=0}
From equation (4), acceptable singular stress fields must have
λ
>
0
{\displaystyle \lambda >0}
.Hence,
λ
=
0
{\displaystyle \lambda =0}
is not acceptable.
The term with the smallest eigenvalue of
λ
{\displaystyle \lambda }
dominates the solution. Hence, this eigenvalue is what we seek.
λ
=
1
{\displaystyle \lambda =1}
leads to
φ
=
a
4
sin
(
0
)
{\displaystyle \varphi =a_{4}\sin(0)}
. Unacceptable.
We can find the eiegnvalues for general wedge angles using graphical methods.
Special case : α = π = 180°
edit
In this case, the wedge becomes a crack.In this case,
(21)
λ
=
1
2
,
1
,
3
2
,
{\displaystyle {\text{(21)}}\qquad \lambda ={\frac {1}{2}},1,{\frac {3}{2}},}
The lowest eigenvalue is
1
/
2
{\displaystyle 1/2}
. If we use, this value in equation
(17), then the two equations will not be linearly independent and
we can express them as one equation with the substitutions
(22)
a
1
=
A
2
sin
(
α
2
)
;
a
2
=
−
3
A
2
sin
(
3
α
2
)
{\displaystyle {\text{(22)}}\qquad a_{1}={\frac {A}{2}}\sin \left({\frac {\alpha }{2}}\right)~;~~a_{2}=-{\frac {3A}{2}}\sin \left({\frac {3\alpha }{2}}\right)}
where
A
{\displaystyle A}
is a constant.
The singular stress field at the crack tip is then
σ
r
r
=
K
I
2
π
r
[
5
4
cos
(
θ
2
)
−
1
4
cos
(
3
θ
2
)
]
(23)
σ
θ
θ
=
K
I
2
π
r
[
3
4
cos
(
θ
2
)
+
1
4
cos
(
3
θ
2
)
]
(24)
σ
r
θ
=
K
I
2
π
r
[
1
4
sin
(
θ
2
)
+
1
4
sin
(
3
θ
2
)
]
(25)
{\displaystyle {\begin{aligned}\sigma _{rr}&={\frac {K_{I}}{\sqrt {2\pi r}}}\left[{\frac {5}{4}}\cos \left({\frac {\theta }{2}}\right)-{\frac {1}{4}}\cos \left({\frac {3\theta }{2}}\right)\right]{\text{(23)}}\qquad \\\sigma _{\theta \theta }&={\frac {K_{I}}{\sqrt {2\pi r}}}\left[{\frac {3}{4}}\cos \left({\frac {\theta }{2}}\right)+{\frac {1}{4}}\cos \left({\frac {3\theta }{2}}\right)\right]{\text{(24)}}\qquad \\\sigma _{r\theta }&={\frac {K_{I}}{\sqrt {2\pi r}}}\left[{\frac {1}{4}}\sin \left({\frac {\theta }{2}}\right)+{\frac {1}{4}}\sin \left({\frac {3\theta }{2}}\right)\right]{\text{(25)}}\qquad \end{aligned}}}
where,
K
I
{\displaystyle K_{I}}
is the { Mode I Stress Intensity Factor.}
(26)
K
I
=
3
A
π
2
{\displaystyle {\text{(26)}}\qquad K_{I}=3A{\sqrt {\frac {\pi }{2}}}}
If we use equations (18) we can get the stresses due to a mode
II loading.
σ
r
r
=
K
I
I
2
π
r
[
−
5
4
sin
(
θ
2
)
+
3
4
sin
(
3
θ
2
)
]
(27)
σ
θ
θ
=
K
I
I
2
π
r
[
−
3
4
sin
(
θ
2
)
−
3
4
sin
(
3
θ
2
)
]
(28)
σ
r
θ
=
K
I
I
2
π
r
[
1
4
cos
(
θ
2
)
+
3
4
cos
(
3
θ
2
)
]
(29)
{\displaystyle {\begin{aligned}\sigma _{rr}&={\frac {K_{II}}{\sqrt {2\pi r}}}\left[-{\frac {5}{4}}\sin \left({\frac {\theta }{2}}\right)+{\frac {3}{4}}\sin \left({\frac {3\theta }{2}}\right)\right]{\text{(27)}}\qquad \\\sigma _{\theta \theta }&={\frac {K_{II}}{\sqrt {2\pi r}}}\left[-{\frac {3}{4}}\sin \left({\frac {\theta }{2}}\right)-{\frac {3}{4}}\sin \left({\frac {3\theta }{2}}\right)\right]{\text{(28)}}\qquad \\\sigma _{r\theta }&={\frac {K_{II}}{\sqrt {2\pi r}}}\left[{\frac {1}{4}}\cos \left({\frac {\theta }{2}}\right)+{\frac {3}{4}}\cos \left({\frac {3\theta }{2}}\right)\right]{\text{(29)}}\qquad \end{aligned}}}
Axially Loaded Wedge
edit
Elastic wedge loaded by an axial force
The BCs at
θ
=
±
β
{\displaystyle \theta =\pm \beta }
are
(30)
t
r
=
t
θ
=
0
;
n
^
=
±
e
^
θ
⇒
σ
r
θ
=
σ
θ
θ
=
0
{\displaystyle {\text{(30)}}\qquad t_{r}=t_{\theta }=0~;~~{\widehat {\mathbf {n} }}{}=\pm {\widehat {\mathbf {e} }}{\theta }\Rightarrow \sigma _{r\theta }=\sigma _{\theta \theta }=0}
What about the concentrated force BC?
edit
What is
n
^
{\displaystyle {\widehat {\mathbf {n} }}{}}
at the vertex ?
The traction is infinite since the force is applied on zero area. Consider equilibrium of a portion of the wedge.
At
r
=
a
{\displaystyle r=a}
, the BCs are
(31)
n
^
=
e
^
r
⇒
σ
r
θ
=
t
r
;
σ
θ
θ
=
t
θ
{\displaystyle {\text{(31)}}\qquad {\widehat {\mathbf {n} }}{}={\widehat {\mathbf {e} }}{r}\Rightarrow \sigma _{r\theta }=t_{r}~;~~\sigma _{\theta \theta }=t_{\theta }}
For equilibrium,
∑
F
1
=
∑
F
2
=
∑
M
3
=
0
{\displaystyle \sum F_{1}=\sum F_{2}=\sum M_{3}=0}
.
Therefore,
P
1
+
∫
−
β
β
[
σ
r
r
(
a
,
θ
)
cos
θ
−
σ
r
θ
(
a
,
θ
)
sin
θ
]
a
d
θ
=
0
(32)
∫
−
β
β
[
σ
r
r
(
a
,
θ
)
sin
θ
+
σ
r
θ
(
a
,
θ
)
cos
θ
]
a
d
θ
=
0
(33)
∫
−
β
β
[
a
σ
r
θ
(
a
,
θ
)
]
a
d
θ
=
0
(34)
{\displaystyle {\begin{aligned}P_{1}+\int _{-\beta }^{\beta }\left[\sigma _{rr}(a,\theta )\cos \theta -\sigma _{r\theta }(a,\theta )\sin \theta \right]a~d\theta =0{\text{(32)}}\qquad \\\int _{-\beta }^{\beta }\left[\sigma _{rr}(a,\theta )\sin \theta +\sigma _{r\theta }(a,\theta )\cos \theta \right]a~d\theta =0{\text{(33)}}\qquad \\\int _{-\beta }^{\beta }\left[a\sigma _{r\theta }(a,\theta )\right]a~d\theta =0{\text{(34)}}\qquad \end{aligned}}}
These constraint conditions are equivalent to the concentrated force BC.
Assume that
σ
r
θ
(
r
,
θ
)
=
0
{\displaystyle \sigma _{r\theta }(r,\theta )=0}
. This satisfies the traction
BCs on
θ
=
±
β
{\displaystyle \theta =\pm \beta }
and equation (34). Therefore,
(35)
σ
r
θ
=
∂
∂
r
(
1
r
∂
∂
φ
θ
)
=
0
⇒
φ
=
r
η
(
θ
)
+
ζ
(
r
)
{\displaystyle {\text{(35)}}\qquad \sigma _{r\theta }={\frac {\partial }{\partial }}{}{r}\left({\frac {1}{r}}{\frac {\partial }{\partial }}{\varphi }{\theta }\right)=0\Rightarrow \varphi =r\eta (\theta )+\zeta (r)}
Hence,
(36)
σ
θ
θ
=
∂
2
∂
φ
∂
r
=
ζ
″
(
r
)
{\displaystyle {\text{(36)}}\qquad \sigma _{\theta \theta }={\frac {\partial ^{2}}{\partial \varphi \partial r}}=\zeta ^{''}(r)}
That means
σ
θ
θ
{\displaystyle \sigma _{\theta \theta }}
is independent of
θ
{\displaystyle \theta }
. Therefore,
in order to satisfy the BCs,
σ
θ
θ
=
0
{\displaystyle \sigma _{\theta \theta }=0}
, i.e.,
(37)
ζ
(
r
)
=
C
1
r
+
C
2
⇒
φ
=
r
η
(
θ
)
+
C
1
r
=
r
[
η
(
θ
)
+
C
1
]
=
r
ξ
(
θ
)
{\displaystyle {\text{(37)}}\qquad \zeta (r)=C_{1}r+C_{2}\Rightarrow \varphi =r\eta (\theta )+C_{1}r=r[\eta (\theta )+C_{1}]=r\xi (\theta )}
Checking for compatibility,
∇
4
φ
=
0
{\displaystyle \nabla ^{4}{\varphi }=0}
, we get
(38)
ξ
(
I
V
)
(
θ
)
+
2
ξ
″
(
θ
)
+
ξ
(
θ
)
=
0
{\displaystyle {\text{(38)}}\qquad \xi ^{(IV)}(\theta )+2\xi ^{''}(\theta )+\xi (\theta )=0}
The general solution is
(39)
ξ
(
θ
)
=
A
sin
θ
+
B
cos
θ
+
C
θ
sin
θ
+
D
θ
cos
θ
{\displaystyle {\text{(39)}}\qquad \xi (\theta )=A\sin \theta +B\cos \theta +C\theta \sin \theta +D\theta \cos \theta }
Therefore,
(40)
φ
=
r
[
A
sin
θ
+
B
cos
θ
+
C
θ
sin
θ
+
D
θ
cos
θ
]
{\displaystyle {\text{(40)}}\qquad {\varphi =r\left[A\sin \theta +B\cos \theta +C\theta \sin \theta +D\theta \cos \theta \right]}}
The only non-zero stress is
σ
r
r
{\displaystyle \sigma _{rr}}
.
(41)
σ
r
r
=
1
r
[
2
C
cos
θ
−
2
D
sin
θ
]
{\displaystyle {\text{(41)}}\qquad \sigma _{rr}={\frac {1}{r}}\left[2C\cos \theta -2D\sin \theta \right]}
Plugging into equation (33), we get
(42)
−
D
[
2
β
−
sin
(
2
β
)
]
=
0
⇒
D
=
0
{\displaystyle {\text{(42)}}\qquad -D\left[2\beta -\sin(2\beta )\right]=0\Rightarrow D=0}
Hence,
(43)
σ
r
r
=
2
C
r
cos
θ
{\displaystyle {\text{(43)}}\qquad \sigma _{rr}={\frac {2C}{r}}\cos \theta }
Plugging into equation (32), we get
(44)
−
P
=
C
[
2
β
+
sin
(
2
β
)
]
⇒
C
=
−
P
2
β
+
sin
(
2
β
)
{\displaystyle {\text{(44)}}\qquad -P=C\left[2\beta +\sin(2\beta )\right]\Rightarrow C={\frac {-P}{2\beta +\sin(2\beta )}}}
Therefore,
(45)
φ
=
C
r
θ
sin
θ
=
−
P
r
θ
sin
θ
2
β
+
sin
(
2
β
)
{\displaystyle {\text{(45)}}\qquad {\varphi =Cr\theta \sin \theta ={\frac {-Pr\theta \sin \theta }{2\beta +\sin(2\beta )}}}}
The stress state is
(46)
σ
r
r
=
−
2
P
cos
θ
r
[
2
β
+
sin
(
2
β
)
]
;
σ
r
θ
=
0
;
σ
θ
θ
=
0
{\displaystyle {\text{(46)}}\qquad {\sigma _{rr}=-{\frac {2P\cos \theta }{r[2\beta +\sin(2\beta )]}}~;~~\sigma _{r\theta }=0~;~~\sigma _{\theta \theta }=0}}
Special Case : β = π/2
edit
A concentrated point load acting on a half plane.
(47)
σ
r
r
=
−
2
P
cos
θ
π
r
;
σ
r
θ
=
0
;
σ
θ
θ
=
0
{\displaystyle {\text{(47)}}\qquad {\sigma _{rr}=-{\frac {2P\cos \theta }{\pi r}}~;~~\sigma _{r\theta }=0~;~~\sigma _{\theta \theta }=0}}
The Flamant Solution
edit