Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Several series/1/Exercise
Language
Watch
Edit
Determine whether the following series converge:
∑
n
=
1
∞
n
+
3
n
3
−
n
2
−
n
+
2
{\displaystyle {}\sum _{n=1}^{\infty }{\frac {n+3}{n^{3}-n^{2}-n+2}}}
,
∑
n
=
1
∞
n
+
n
n
2
−
n
+
1
{\displaystyle {}\sum _{n=1}^{\infty }{\frac {n+{\sqrt {n}}}{n^{2}-{\sqrt {n}}+1}}}
,
∑
n
=
1
∞
(
−
1
)
n
(
n
−
n
−
1
)
{\displaystyle {}\sum _{n=1}^{\infty }(-1)^{n}({\sqrt {n}}-{\sqrt {n-1}})}
.
Create a solution