Riesel conjectures
Definition
editFor the original Riesel problem, it is finding and proving the smallest k such that k×bn-1 is not prime for all integers n ≥ 1 and GCD(k-1, b-1)=1.
Extended definiton
editFinding and proving the smallest k such that (k×bn-1)/GCD(k-1, b-1) is not prime for all integers n ≥ 1.
Notes
editAll n must be >= 1.
k-values that make a full covering set with all or partial algebraic factors are excluded from the conjectures.
k-values that are a multiple of base (b) and where (k-1)/gcd(k-1,b-1) is not prime are included in the conjectures but excluded from testing.
Such k-values will have the same prime as k / b.
Table
editBase | Conjectured smallest Riesel k | Covering set | k's that make a full covering set with all or partial algebraic factors | Remaining k to find prime
(n testing limit) |
Top 10 k's with largest first primes: k (n)
(sorted by n only) |
Comments |
2 | 509203 | 3, 5, 7, 13, 17, 241 | 23669, 31859, 38473, 46663, 67117, 74699, 81041, 93839, 97139, 107347, 121889, 129007, 143047, 161669, 206231, 215443, 226153, 234343, 245561, 250027, 315929, 319511, 324011, 325123, 327671, 336839, 342847, 344759, 351134, 362609, 363343, 364903, 365159, 368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491, 477583, 478214, 485557, 494743 (k = 351134 and 478214 at n=8M, other k at n=12.5M) | 192971 (14773498)
206039 (13104952) 2293 (12918431) 9221 (11392194) 146561 (11280802) 273809 (8932416) 502573 (7181987) 402539 (7173024) 40597 (6808509) 304207 (6643565) |
||
3 | 12119 | 2, 5, 7, 13, 73 | 1613, 1831, 1937, 3131, 3589, 5755, 6787, 7477, 7627, 7939, 8713, 8777, 9811, 10651, 11597 (all at n=50K) | 8059 (47256)
11753 (36665) 6119 (28580) 7511 (26022) 313 (24761) 11251 (24314) 9179 (21404) 997 (20847) 6737 (17455) 7379 (16856) |
||
4 | 361 | 3, 5, 7, 13 | All k = m^2 for all n;
factors to: (m*2^n - 1) * (m*2^n + 1) |
none - proven (primality certificate for k=106) | 106 (4553)
74 (1276) 219 (206) 191 (113) 312 (51) 247 (42) 223 (33) 274 (22) 234 (18) 91 (17) |
k = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, and 324 proven composite by full algebraic factors. |
5 | 13 | 2, 3 | none - proven | 2 (4)
1 (3) 11 (2) 8 (2) 12 (1) 9 (1) 7 (1) 6 (1) 4 (1) 3 (1) |
||
6 | 84687 | 7, 13, 31, 37, 97 | 1597, 6236, 9491, 37031, 49771, 50686, 53941, 55061, 57926, 76761, 79801, 83411 (k = 1597 at n=5.6M, other k at n=40K) | 36772 (1723287)
43994 (569498) 77743 (560745) 51017 (528803) 57023 (483561) 78959 (458114) 59095 (171929) 48950 (143236), 29847 (141526) 9577 (121099) |
||
7 | 457 | 2, 3, 5, 13, 19 | none - proven (with probable primes that have not been certified: k = 197) (the k=139 prime is proven prime by N-1, and primality certificate for the large prime factor of N-1) (primality certificate for k=367, primality certificate for k=313, primality certificate for k=159, primality certificate for k=429, primality certificate for k=391, primality certificate for k=299, [http://factordb.com/cert.php?id=1100000000854476434 primality certificate for k=79) | 197 (181761)
367 (15118) 313 (5907) 159 (4896) 429 (3815) 419 (1052) 391 (938) 299 (600) 139 (468) 79 (424) |
||
8 | 14 | 3, 5, 13 | All k = m^3 for all n;
factors to: (m*2^n - 1) * (m^2*4^n + m*2^n + 1) |
none - proven | 11 (18)
5 (4) 12 (3) 7 (3) 2 (2) 13 (1) 10 (1) 9 (1) 6 (1) 4 (1) |
k = 1 and 8 proven composite by full algebraic factors. |
9 | 41 | 2, 5 | All k = m^2 for all n;
factors to: (m*3^n - 1) * (m*3^n + 1) |
none - proven | 11 (11)
24 (8) 14 (8) 38 (3) 18 (3) 39 (2) 34 (2) 32 (2) 29 (2) 27 (2) |
k = 1, 4, 9, 16, 25, and 36 proven composite by full algebraic factors. |
10 | 334 | 3, 7, 13, 37 | none - proven (primality certificate for k=121) | 121 (483)
109 (136) 98 (90) 230 (60) 289 (35) 89 (33) 32 (28) 233 (18) 324 (17) 100 (17) |
||
11 | 5 | 2, 3 | none - proven | 1 (17)
3 (2) 2 (2) 4 (1) |
||
12 | 376 | 5, 13, 29 | (Condition 1):
All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*12^q - 1) * (m*12^q + 1) odd n: factor of 13 (Condition 2): All k where k = 3*m^2 and m = = 3 or 10 mod 13: even n: factor of 13 for odd n let k = 3*m^2 and let n=2*q-1; factors to: [m*2^(2q-1)*3^q - 1] * [m*2^(2q-1)*3^q + 1] |
none - proven (primality certificate for k=298) | 298 (1676)
157 (285) 46 (194) 304 (40) 259 (40) 94 (36) 292 (30) 147 (28) 301 (27) 349 (25) |
k = 25, 64, and 324 proven composite by condition 1.
k = 27 and 300 proven composite by condition 2. |
13 | 29 | 2, 7 | none - proven | 25 (15)
28 (14) 20 (10) 1 (5) 22 (3) 17 (3) 16 (3) 27 (2) 21 (2) 12 (2) |
||
14 | 4 | 3, 5 | none - proven | 2 (4)
1 (3) 3 (1) |
||
15 | 622403 | 2, 17, 113, 1489 | 47, 203, 239, 407, 437, 451, 889, 893, 1945, 2049, 2245, 2487, 2507, 2689, 2699, 2863, 3059, 3163, 3179, 3261, 3409, 3697, 3701, 3725, 4173, 4249, 4609, 4771, 4877, 5041, 5243, 5425, 5441, 5503, 5669, 5857, 5913, 5963, 6231, 6447, 6787, 6879, 6999, 7386, 7407, 7459, 7473, 7527, 7615, 7683, 7687, 7859, 8099, 8621, 8671, 8839, 8863, 9025, 9267, 9409, 9655, 9663, 9707, 9817, 9955 (for k <= 10K) (all at n=1.5K) | 2940 (13254)
8610 (5178) 2069 (1461) 3917 (1427) 1145 (1349) 1583 (1330) 7027 (1316) 8831 (1296) 5305 (1273) 4865 (1265) |
||
16 | 100 | 3, 7, 13 | All k = m^2 for all n;
factors to: (m*4^n - 1) * (m*4^n + 1) |
none - proven | 74 (638)
78 (26) 48 (15) 58 (12) 31 (12) 95 (8) 46 (8) 88 (6) 44 (6) 39 (6) |
k = 1, 4, 9, 16, 25, 36, 49, 64, and 81 proven composite by full algebraic factors. |
17 | 49 | 2, 3 | none - proven (primality certificate for k=29, primality certificate for k=13) | 44 (6488)
29 (4904) 13 (1123) 36 (243) 10 (117) 26 (110) 5 (60) 11 (46) 46 (25) 35 (24) |
||
18 | 246 | 5, 13, 19 | none - proven | 151 (418)
78 (172) 50 (110) 79 (63) 237 (44) 184 (44) 75 (44) 215 (36) 203 (32) 93 (32) |
||
19 | 9 | 2, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*19^q - 1) * (m*19^q + 1) odd n: factor of 5 |
none - proven | 1 (19)
7 (2) 3 (2) 8 (1) 6 (1) 5 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
20 | 8 | 3, 7 | none - proven | 2 (10)
1 (3) 6 (2) 5 (2) 7 (1) 4 (1) 3 (1) |
||
21 | 45 | 2, 11 | none - proven | 29 (98)
34 (17) 43 (10) 32 (4) 5 (4) 6 (3) 1 (3) 44 (2) 37 (2) 31 (2) |
||
22 | 2738 | 5, 23, 97 | 208, 211, 898, 976, 1036, 1885, 1933, 2050, 2161, 2278, 2347, 2434 (all at n=13K) | 1013 (26067)
185 (11433) 1335 (11155) 2719 (9671) 2083 (8046) 883 (5339) 2529 (3700) 2116 (3371) 2230 (3236) 1119 (2849) |
||
23 | 5 | 2, 3 | none - proven | 3 (6)
2 (6) 4 (5) 1 (5) |
||
24 | 32336 | 5, 7, 13, 73, 577 | (Condition 1):
All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*24^q - 1) * (m*24^q + 1) odd n: factor of 5 (Condition 2): All k where k = 6*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 6*m^2 and let n=2*q-1; factors to: [m*2^(3q-1)*3^q - 1] * [m*2^(3q-1)*3^q + 1] |
389, 461, 1581, 1711, 2094, 2606, 3006, 3754, 4239, 5356, 5784, 5791, 6116, 6579, 6781, 6831, 7321, 7809, 10219, 10399, 10666, 11101, 11516, 12326, 12429, 12674, 13269, 13691, 15019, 15151, 15614, 15641, 16124, 16234, 16616, 17019, 17436, 18054, 18454, 18964, 19116, 20026, 20576, 20611, 20879, 21004, 21464, 21524, 21639, 21809, 23549, 24404, 25046, 25136, 25349, 25389, 25419, 25646, 25731, 26176, 26229, 26661, 27049, 27154, 28001, 28384, 28849, 28859, 29211, 29531, 29569, 29581, 31071, 31466, 31734, 31854, 31994, 31996, 32099 (k = 1 mod 23 at n=12.4K, other k at n=260K) | 10171 (259815)
11906 (252629) 23059 (252514) 21411 (252303) 28554 (239686) 20804 (233296) 8894 (210624) 2844 (203856) 25379 (175842) 22604 (169372) |
k = 2^2, 3^2, 7^2, 8^2, 12^2, 13^2, 17^2, 18^2 (etc. pattern repeating every 5m) proven composite by condition 1.
k = 6*1^2, 6*4^2, 6*6^2, 6*9^2, 6*11^2, 6*14^2, 6*16^2, 6*19^2 (etc. pattern repeating every 5m) proven composite by condition 2. |
25 | 105 | 2, 13 | All k = m^2 for all n;
factors to: (m*5^n - 1) * (m*5^n + 1) |
none - proven | 86 (1029)
58 (26) 72 (24) 67 (24) 79 (21) 37 (17) 38 (14) 92 (13) 57 (10) 98 (9) |
k = 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100 proven composite by full algebraic factors. |
26 | 149 | 3, 7, 31, 37 | none - proven (primality certificate for k=121) | 115 (520277)
32 (9812) 121 (1509) 73 (537) 80 (382) 128 (300) 124 (249) 37 (233) 25 (133) 65 (100) |
||
27 | 13 | 2, 7 | All k = m^3 for all n;
factors to: (m*3^n - 1) * (m^2*9^n + m*3^n + 1) |
none - proven | 9 (23)
11 (10) 12 (2) 7 (2) 6 (2) 3 (2) 10 (1) 5 (1) 4 (1) 2 (1) |
k = 1 and 8 proven composite by full algebraic factors. |
28 | 3769 | 5, 29, 157 | (Condition 1):
All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*28^q - 1) * (m*28^q + 1) odd n: factor of 29 (Condition 2): All k where k = 7*m^2 and m = = 5 or 24 mod 29: even n: factor of 29 for odd n let k = 7*m^2 and let n=2*q-1; factors to: [m*2^(2q-1)*7^q - 1] * [m*2^(2q-1)*7^q + 1] |
233, 376, 943, 1132, 1422, 2437 (k = 233 and 1422 at n=1M, other k at n=20.3K) | 2319 (65184)
3232 (9147) 3019 (7073) 460 (5400) 1688 (4760) 2406 (4634) 2464 (4324) 849 (3129) 1507 (2938) 472 (2414) |
k = 144, 289, 1681, and 2116 proven composite by condition 1.
k = 175 proven composite by condition 2. |
29 | 4 | 3, 5 | none - proven | 2 (136)
1 (5) 3 (1) |
||
30 | 4928 | 13, 19, 31, 67 | k = 1369:
for even n let n=2*q; factors to: (37*30^q - 1) * (37*30^q + 1) odd n: covering set 7, 13, 19 |
659, 1024, 1580, 1936, 2293, 2916, 3719, 4372, 4897 (all at n=500K) | 1642 (346592)
239 (337990) 2538 (262614) 249 (199355) 3256 (160619) 225 (158755) 774 (148344) 1873 (50427) 3253 (43291) 1654 (38869) |
|
31 | 145 | 2, 3, 7, 19 | 5, 19, 51, 73, 97 (all at n=6K) | 123 (1872)
124 (1116) 113 (643) 49 (637) 115 (464) 21 (275) 39 (250) 70 (149) 142 (140) 33 (107) |
||
32 | 10 | 3, 11 | All k = m^5 for all n;
factors to: (m*2^n - 1) * (m^4*16^n + m^3*8^n + m^2*4^n + m*2^n + 1) |
none - proven | 3 (11)
2 (6) 9 (3) 8 (2) 5 (2) 7 (1) 6 (1) 4 (1) |
k = 1 proven composite by full algebraic factors. |
33 | 545 | 2, 17 | (Condition 1):
All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*33^q - 1) * (m*33^q + 1) odd n: factor of 17 (Condition 2): All k where k = 33*m^2 and m = = 4 or 13 mod 17: [Reverse condition 1] (Condition 3): All k where k = m^2 and m = = 15 or 17 mod 32: for even n let k = m^2 and let n = 2*q; factors to: (m*33^q - 1) * (m*33^q + 1) odd n: factor of 2 |
257, 339 (both at n=12K) | 186 (16770)
254 (3112) 142 (2568) 370 (1628) 272 (1418) 222 (919) 108 (360) 213 (233) 387 (191) 277 (187) |
k = 16, 169, and 441 proven composite by condition 1.
k = 528 proven composite by condition 2. k = 225 and 289 proven composite by condition 3. |
34 | 6 | 5, 7 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*34^q - 1) * (m*34^q + 1) odd n: factor of 5 |
none - proven | 1 (13)
5 (2) 3 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
35 | 5 | 2, 3 | none - proven (for the k=1 prime, factor N-1 is equivalent to factor 35^312-1) | 1 (313)
3 (6) 2 (6) 4 (1) |
||
36 | 33791 | 13, 31, 43, 97 | All k = m^2 for all n;
factors to: (m*6^n - 1) * (m*6^n + 1) |
1148, 1555, 2110, 2133, 3699, 4551, 4737, 6236, 6883, 7253, 7362, 7399, 7991, 8250, 8361, 8363, 8472, 9491, 9582, 11014, 12320, 12653, 13641, 14358, 14540, 14836, 14973, 14974, 15228, 15687, 15756, 15909, 16168, 17354, 17502, 17946, 18203, 19035, 19646, 20092, 20186, 20630, 21880, 22164, 22312, 23213, 23901, 23906, 24236, 24382, 24645, 24731, 24887, 25011, 25159, 25161, 25204, 25679, 25788, 26160, 26355, 27161, 29453, 29847, 30970, 31005, 31634, 32302, 33047, 33627 (all at n=10K) | 13800 (9790)
20485 (9140) 19389 (9119) 20684 (8627) 19907 (8439) 11216 (7524) 28416 (7315) 32380 (7190) 27296 (7115) 10695 (6672) |
k = 1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2, 10^2, 11^2, 12^2, 13^2, 14^2, 15^2, 16^2, etc. proven composite by full algebraic factors. |
37 | 29 | 2, 5, 7, 13, 67 | none - proven (for the k=5 prime, factor N-1 is equivalent to factor 37^900-1) | 5 (900)
19 (63) 18 (14) 1 (13) 8 (4) 25 (3) 23 (3) 14 (3) 6 (3) 4 (3) |
||
38 | 13 | 3, 5, 17 | none - proven | 11 (766)
9 (43) 7 (7) 1 (3) 12 (2) 8 (2) 5 (2) 2 (2) 10 (1) 6 (1) |
||
39 | 9 | 2, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*39^q - 1) * (m*39^q + 1) odd n: factor of 5 |
none - proven (for the k=1 prime, factor N-1 is equivalent to factor 39^348-1) | 1 (349)
7 (2) 3 (2) 2 (2) 8 (1) 6 (1) 5 (1) |
k = 4 proven composite by partial algebraic factors. |
40 | 25462 | 3, 7, 41, 223 | (Condition 1):
All k where k = m^2 and m = = 9 or 32 mod 41: for even n let k = m^2 and let n = 2*q; factors to: (m*40^q - 1) * (m*40^q + 1) odd n: factor of 41 (Condition 2): All k where k = 10*m^2 and m = = 18 or 23 mod 41: even n: factor of 41 for odd n let k = 10*m^2 and let n=2*q-1; factors to: [m*2^(3q-1)*5^q - 1] * [m*2^(3q-1)*5^q + 1] |
157, 534, 618, 709, 739, 787, 862, 1067, 1114, 1174, 1559, 1805, 2254, 2887, 3418, 3650, 4006, 4582, 4673, 4771, 6107, 6463, 6682, 6684, 6946, 7094, 7258, 7282, 7381, 7504, 7702, 7795, 8035, 8461, 8572, 9226, 9347, 9472, 9716, 9748, 9964, 10285, 10615, 10744, 11030, 11470, 11479, 11560, 11847, 12178, 12193, 12250, 12299, 12301, 12568, 12742, 13005, 13022, 13039, 13191, 13624, 13666, 13777, 13939, 14146, 14262, 14494, 15374, 15417, 15496, 15661, 15730, 16579, 16705, 16891, 16932, 17014, 17275, 17344, 17923, 17998, 18949, 19117, 19310, 19606, 19722, 19761, 19825, 19927, 20158, 20212, 20428, 20458, 20583, 20788, 21276, 21321, 21493, 21817, 21895, 22262, 22303, 22344, 22879, 23371, 24268, 24337, 24979 (all at n=5K) | 20479 (4917)
17536 (4845) 13165 (4713) 14980 (4579) 19751 (4554) 20747 (4471) 19780 (4400) 11971 (4360) 24421 (4047) 21731 (3999) |
k = 81, 1024, 2500, 5329, 8281, 12996, 17424, and 24025 proven composite by condition 1.
k = 3240 and 5290 proven composite by condition 2. |
41 | 8 | 3, 7 | none - proven | 7 (153)
5 (10) 1 (3) 6 (2) 2 (2) 4 (1) 3 (1) |
||
42 | 15137 | 5, 43, 353 | 603, 1049, 1600, 2538, 4299, 4903, 5118, 5978, 6836, 6964, 6971, 7309, 8297, 8341, 9029, 9201, 9633, 9848, 11267, 11781, 11911, 11996, 12125, 12127, 12213, 12598, 13288, 13347, 14884 (k = 1600, 6971 and 14884 at n=8K, other k at n=200K) | 7051 (188034)
5417 (179220) 13898 (152983) 1633 (128734) 13757 (126934) 7913 (108747) 15024 (104613) 8453 (89184) 7658 (79316) 10923 (61071) |
||
43 | 21 | 2, 11 | 13 (50K) | 4 (279)
12 (203) 17 (79) 3 (24) 1 (5) 19 (4) 15 (4) 7 (4) 11 (2) 10 (2) |
||
44 | 4 | 3, 5 | none - proven | 1 (5)
2 (4) 3 (1) |
||
45 | 93 | 2, 23 | none - proven (primality certificate for k=53) | 24 (153355)
53 (582) 70 (167) 29 (146) 76 (102) 85 (82) 91 (50) 77 (26) 1 (19) 33 (11) |
||
46 | 928 | 3, 7, 103 | 281, 436, 800 (k = 800 at n=500K, other k at n=28K) | 870 (51699)
86 (26325) 93 (24162) 561 (5011) 576 (3659) 100 (2955) 386 (2425) 338 (1478) 597 (950) 121 (935) |
||
47 | 5 | 2, 3 | none - proven | 4 (1555)
1 (127) 2 (4) 3 (2) |
||
48 | 3226 | 5, 7, 461 | 313, 384, 708, 909, 916, 1093, 1457, 1686, 1877, 1896, 1898, 2071, 2148, 2172, 2402, 2589, 2682, 2927, 2939, 3044, 3067 (all at n=200K) | 2157 (169491)
2549 (169453) 1478 (167541) 2822 (129611) 2379 (116204) 118 (107422) 692 (103056) 1842 (87175) 953 (81493) 2582 (75696) |
||
49 | 81 | 2, 5 | All k = m^2 for all n;
factors to: (m*7^n - 1) * (m*7^n + 1) |
none - proven (primality certificate for k=79) | 79 (212)
44 (122) 69 (42) 30 (24) 59 (16) 53 (15) 70 (14) 24 (14) 31 (9) 74 (6) |
k = 1, 4, 9, 16, 25, 36, 49, and 64 proven composite by full algebraic factors. |
50 | 16 | 3, 17 | none - proven | 14 (66)
13 (19) 5 (12) 11 (6) 6 (6) 1 (3) 8 (2) 2 (2) 15 (1) 12 (1) |
||
51 | 25 | 2, 13 | none - proven (primality certificate for k=1) | 1 (4229)
23 (96) 3 (8) 12 (4) 14 (3) 4 (3) 22 (2) 19 (2) 18 (2) 15 (2) |
||
52 | 25015 | 3, 7, 53, 379 | (Condition 1):
All k where k = m^2 and m = = 23 or 30 mod 53: for even n let k = m^2 and let n = 2*q; factors to: (m*52^q - 1) * (m*52^q + 1) odd n: factor of 53 (Condition 2): All k where k = 13*m^2 and m = = 7 or 46 mod 53: even n: factor of 53 for odd n let k = 13*m^2 and let n=2*q-1; factors to: [m*2^(2q-1)*13^q - 1] * [m*2^(2q-1)*13^q + 1] |
82, 349, 372, 476, 478, 657, 796, 902, 1167, 1234, 1271, 1534, 1589, 1651, 1669, 1801, 1881, 1909, 2035, 2113, 2364, 2437, 2492, 2557, 2643, 2722, 2725, 2769, 3022, 3128, 3199, 3229, 3418, 3559, 3607, 3656, 3764, 3788, 3847, 3870, 4043, 4117, 4239, 4294, 4329, 4366, 4597, 4665, 4754, 4975, 4981, 5037, 5107, 5142, 5158, 5246, 5541, 5575, 5672, 5836, 5882, 6193, 6256, 6308, 6394, 6442, 6493, 6568, 6697, 6835, 6873, 6962, 6981, 6997, 7386, 7399, 7594, 7633, 8163, 8389, 8422, 8488, 8587, 8693, 8744, 8932, 8958, 9055, 9148, 9187, 9223, 9382, 9421, 9624, 9647, 9667, 9682, 9753, 9769, 9799, 9802, 9907, 9967, 10069, 10129, 10173, 10243, 10429, 10462, 10546, 10919, 10996, 11161, 11164, 11299, 11355, 11371, 11394, 11401, 11500, 11767, 11826, 11827, 11854, 12064, 12133, 12304, 12352, 12401, 12423, 12454, 12668, 12688, 12719, 12827, 12931, 13045, 13196, 13198, 13264, 13306, 13357, 13551, 13687, 14309, 14453, 14584, 14647, 14682, 14698, 14786, 14833, 14968, 15010, 15109, 15212, 15265, 15316, 15370, 15574, 15688, 15928, 15937, 16007, 16039, 16087, 16111, 16216, 16293, 16308, 16729, 16748, 16884, 16906, 17197, 17224, 17277, 17311, 17423, 17438, 17734, 17754, 17882, 17989, 18604, 18670, 18757, 18761, 18787, 18871, 18883, 18899, 19026, 19028, 19079, 19102, 19163, 19363, 19556, 19609, 19678, 19821, 19876, 19982, 20088, 20139, 20395, 20616, 20821, 20881, 20883, 20983, 21016, 21148, 21151, 21316, 21413, 21464, 21526, 21537, 21757, 21784, 21796, 21804, 21859, 21866, 21898, 22096, 22146, 22180, 22308, 22312, 22383, 22447, 22471, 22643, 22723, 22738, 22771, 22789, 23215, 23268, 23344, 23377, 23427, 23518, 23531, 23533, 23584, 23692, 23773, 24331, 24403, 24557, 24591, 24911 (all at n=5K) | 24244 (4987)
24503 (4983) 1357 (4981) 607 (4949) 7603 (4924) 14998 (4896) 14179 (4797) 6434 (4793) 21572 (4673) 5236 (4447) |
k = 529, 900, 5776, 6889, 16641, and 18496 proven composite by condition 1.
k = 637 proven composite by condition 2. |
53 | 13 | 2, 3 | none - proven | 12 (71)
10 (71) 2 (44) 7 (11) 1 (11) 8 (8) 11 (6) 9 (3) 5 (2) 6 (1) |
||
54 | 21 | 5, 11 | (Condition 1):
All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*54^q - 1) * (m*54^q + 1) odd n: factor of 5 (Condition 2): All k where k = 6*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 6*m^2 and let n=2*q-1; factors to: [m*2^q*3^(3q-1) - 1] * [m*2^q*3^(3q-1) + 1] |
none - proven | 20 (8)
19 (6) 10 (4) 17 (3) 1 (3) 14 (2) 7 (2) 3 (2) 18 (1) 16 (1) |
k = 4 and 9 proven composite by condition 1.
k = 6 proven composite by condition 2. |
55 | 13 | 2, 7 | none - proven | 3 (76)
1 (17) 11 (8) 9 (3) 7 (2) 6 (2) 12 (1) 10 (1) 8 (1) 5 (1) |
||
56 | 20 | 3, 19 | none - proven | 14 (26)
10 (23) 1 (7) 18 (4) 17 (4) 7 (3) 11 (2) 8 (2) 5 (2) 2 (2) |
||
57 | 144 | 5, 13, 29 | All k where k = m^2
and m = = 3 or 5 mod 8: for even n let k = m^2 and let n = 2*q; factors to: (m*57^q - 1) * (m*57^q + 1) odd n: factor of 2 |
none - proven (the k=87 prime is proven prime by N-1, and primality certificate for the large prime factor of N-1) | 87 (242)
54 (157) 100 (109) 59 (83) 115 (34) 124 (31) 88 (27) 63 (22) 139 (20) 38 (20) |
k = 9, 25, and 121 proven composite by partial algebraic factors. |
58 | 547 | 3, 7, 163 | 71, 130, 169, 178, 319, 456, 493, 499 (k = 71 and 456 at n=100K, other k at n=14K) | 382 (7188)
400 (5245) 421 (4526) 176 (2854) 473 (1641) 487 (1412) 312 (1079) 334 (724) 53 (645) 457 (492) |
||
59 | 4 | 3, 5 | none - proven | 3 (8)
1 (3) 2 (2) |
||
60 | 20558 | 13, 61, 277 | (Condition 1):
All k where k = m^2 and m = = 11 or 50 mod 61: for even n let k = m^2 and let n = 2*q; factors to: (m*60^q - 1) * (m*60^q + 1) odd n: factor of 61 (Condition 2): All k where k = 15*m^2 and m = = 22 or 39 mod 61: even n: factor of 61 for odd n let k = 15*m^2 and let n=2*q-1; factors to: [m*2^(2q-1)*15^q - 1] * [m*2^(2q-1)*15^q + 1] |
36, 1770, 4708, 5317, 5611, 6101, 6162, 6274, 7060, 7870, 8722, 9212, 9454, 9881, 10249, 11101, 12061, 12072, 12098, 12479, 12996, 13297, 13480, 14275, 14851, 15800, 16167, 17185, 17620, 18055, 18965, 18972, 19336, 19394, 19397 (k = 16167 and 18055 at n=8K, other k at n=100K) | 1024 (90701)
12121 (84208) 15227 (80625) 15185 (79350) 8649 (79159) 20131 (71977) 19457 (68854) 16333 (61172) 18776 (60164) 1486 (58932) |
k = 121, 2500, 5184, 14641, and 17689 proven composite by condition 1.
k = 7260 proven composite by condition 2. |
61 | 125 | 2, 31 | 37, 53, 100 (all at n=10K) | 13 (4134)
77 (3080) 10 (1552) 41 (755) 42 (174) 22 (117) 57 (89) 109 (86) 103 (78) 93 (60) |
||
62 | 8 | 3, 7 | none - proven | 3 (59)
4 (9) 1 (3) 6 (2) 5 (2) 2 (2) 7 (1) |
||
63 | 857 | 2, 5, 397 | 93, 129, 139, 211, 231, 237, 251, 281, 291, 333, 417, 457, 471, 473, 491, 493, 497, 513, 587, 599, 633, 669, 677, 679, 691, 733, 771, 817, 819, 831 (all at n=2K) | 65 (1883)
853 (1849) 37 (1615) 64 (1483) 177 (1423) 372 (1320) 821 (1225) 687 (1154) 695 (1144) 271 (1058) |
||
64 | 14 | 5, 13 | All k = m^2 for all n; factors to:
(m*8^n - 1) * (m*8^n + 1) -or- All k = m^3 for all n; factors to: (m*4^n - 1) * (m^2*16^n + m*4^n + 1) |
none - proven | 11 (9)
12 (6) 5 (2) 13 (1) 10 (1) 7 (1) 6 (1) 3 (1) 2 (1) |
k = 1, 4, 8, and 9 proven composite by full algebraic factors. |
65 | 10 | 3, 11 | none - proven | 1 (19)
8 (10) 4 (9) 2 (4) 5 (2) 9 (1) 7 (1) 6 (1) 3 (1) |
||
66 | 63717671 | 7, 67, 613, 4423 | 681, 1056, 1205, 1575, 1669, 1944, 2182, 2916, 2949, 3014, 3083, 3148, 3221, 3526, 3684, 3911, 3946, 4423, 5329, 5361, 5897, 5898, 5959, 5972, 6096, 6189, 6263, 6451, 6768, 6796, 7168, 7237, 7357, 7572, 7614, 7927, 8156, 8173, 8348, 8432, 8510, 8825, 8866, 9017, 9111, 9406, 9409, 9781, 9801, 9906, 9998 (for k <= 10K) (all at n=1K) | 7578 (988)
1252 (956) 2746 (918) 5248 (916) 5476 (873) 5929 (795) 6699 (790) 8843 (780) 5435 (762) 2946 (748) |
||
67 | 33 | 2, 17 | All k where k = m^2
and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*67^q - 1) * (m*67^q + 1) odd n: factor of 17 |
none - proven (primality certificate for k=25) | 25 (2829)
2 (768) 23 (42) 21 (27) 1 (19) 31 (10) 19 (8) 18 (7) 13 (7) 11 (6) |
k = 16 proven composite by partial algebraic factors. |
68 | 22 | 3, 23 | none - proven | 7 (25395)
5 (13574) 11 (198) 8 (62) 10 (53) 3 (10) 1 (5) 14 (4) 2 (4) 9 (3) |
||
69 | 6 | 3, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*69^q - 1) * (m*69^q + 1) odd n: factor of 5 |
none - proven | 5 (4)
1 (3) 3 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
70 | 853 | 13, 29, 71 | 811 (50K) | 729 (28625)
376 (6484) 496 (4934) 434 (3820) 489 (2096) 278 (1320) 550 (764) 31 (545) 174 (441) 778 (356) |
||
71 | 5 | 2, 3 | none - proven | 2 (52)
1 (3) 3 (2) 4 (1) |
||
72 | 293 | 5, 17, 73 | none - proven | 4 (1119849)
79 (28009) 291 (26322) 116 (13887) 118 (4599) 67 (4308) 197 (3256) 24 (2648) 11 (2445) 18 (1494) |
||
73 | 112 | 5, 13, 37 | (Condition 1):
All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*73^q - 1) * (m*73^q + 1) odd n: factor of 37 (Condition 2): All k where k = m^2 and m = = 3 or 5 mod 8: for even n let k = m^2 and let n = 2*q; factors to: (m*73^q - 1) * (m*73^q + 1) odd n: factor of 2 |
none - proven (primality certificate for k=79, primality certificate for k=101) | 79 (9339)
101 (2146) 105 (102) 48 (73) 54 (63) 42 (50) 26 (50) 97 (47) 61 (39) 89 (32) |
k = 36 proven composite by condition 1.
k = 9 and 25 proven composite by condition 2. |
74 | 4 | 3, 5 | none - proven | 2 (132)
1 (5) 3 (2) |
||
75 | 37 | 2, 19 | none - proven (primality certificate for k=35) | 35 (1844)
16 (119) 18 (54) 30 (41) 3 (16) 22 (15) 5 (9) 17 (5) 4 (5) 23 (4) |
||
76 | 34 | 7, 11 | none - proven | 1 (41)
27 (40) 20 (22) 25 (11) 15 (11) 30 (7) 21 (4) 19 (4) 13 (4) 10 (4) |
||
77 | 13 | 2, 3 | none - proven | 2 (14)
1 (3) 12 (2) 11 (2) 8 (2) 5 (2) 3 (2) 10 (1) 9 (1) 7 (1) |
||
78 | 90059 | 5, 79, 1217 | 274, 302, 631, 1816, 2292, 2381, 3872, 3949, 4344, 4383, 4489, 4937, 5057, 5766, 5782, 6077, 6436, 7032, 7800, 8469, 8499, 8649, 8758, 10263, 10924, 10928, 10942, 11044, 11936, 12167, 12187, 12244, 12286, 12332, 12622, 13212, 13287, 13668, 13824, 14059, 14456, 14526, 14932, 15722, 15799, 16451, 16688, 17029, 17039, 17221, 17271, 17732, 17886, 18013, 18663, 19614, 19846, 19909, 19986, 20027, 20182, 20462, 20879, 21197, 21631, 21961, 23052, 23079, 23801, 23899, 24214, 24949, 25061, 25532, 25901, 26377, 26385, 26804, 27021, 27096, 27175, 27256, 27399, 27439, 27842, 29073, 29389, 29668, 29863, 30444, 31046, 31053, 31742, 31836, 31917, 31994, 32705, 33298, 33412, 33671, 33888, 33892, 34728, 35179, 35568, 36233, 36344, 36609, 37024, 38354, 38438, 38711, 38886, 39173, 39901, 40131, 40239, 40289, 40437, 40998, 41079, 41316, 41711, 41748, 42106, 42337, 42896, 43331, 43842, 43886, 44038, 44374, 44634, 44871, 45214, 45221, 45466, 46012, 46187, 46593, 46922, 47004, 47562, 47573, 47636, 47657, 47986, 48004, 48112, 48371, 48973, 48979, 49386, 49611, 49988, 51430, 52042, 52929, 53719, 53761, 54188, 54936, 55245, 55491, 55617, 56563, 56721, 56757, 56904, 57234, 57317, 57611, 57786, 57842, 58402, 58455, 58696, 58854, 59093, 59536, 59774, 60187, 60919, 60978, 61762, 61783, 61937, 62481, 62646, 62854, 63043, 63281, 63351, 64309, 64384, 64744, 65157, 65814, 65885, 66102, 66249, 66991, 67386, 67588, 67593, 67706, 67880, 68027, 68573, 68804, 69630, 69914, 71254, 71338, 72003, 72916, 72997, 73706, 73708, 73734, 73787, 74757, 74823, 75307, 75482, 75857, 75888, 76056, 76392, 76781, 77057, 77594, 78135, 78604, 78835, 78959, 79630, 79633, 79674, 80421, 80725, 80788, 80976, 81208, 81369, 83186, 83739, 84484, 85218, 85506, 85886, 86137, 86164, 86329, 86353, 86446, 86692, 88718, 88817, 88866, 89314, 89538, 89664, 89846 (k = 1 mod 7 and k = 1 mod 11 at n=1K, other k at n=100K) | 3633 (94500)
68571 (91386) 51476 (88677) 78053 (84433) 58412 (83824) 45661 (73022) 11412 (72798) 72638 (70230) 23462 (69162) 23543 (62677) |
||
79 | 9 | 2, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*79^q - 1) * (m*79^q + 1) odd n: factor of 5 |
none - proven | 1 (5)
7 (4) 3 (4) 6 (3) 8 (1) 5 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
80 | 253 | 3, 37, 173 | 10, 31, 214 (all at n=400K) | 170 (148256)
106 (16237) 154 (9753) 46 (5337) 232 (2997) 157 (2613) 169 (1959) 45 (1156) 218 (776) 244 (653) |
||
81 | 74 | 7, 13, 73 | All k = m^2 for all n;
factors to: (m*9^n - 1) * (m*9^n + 1) |
none - proven (primality certificate for k=53) | 53 (268)
42 (99) 23 (68) 18 (15) 35 (14) 30 (12) 71 (4) 60 (4) 40 (4) 24 (4) |
k = 1, 4, 9, 16, 25, 36, 49, and 64 proven composite by full algebraic factors. |
82 | 22326 | 5, 83, 269 | 118, 133, 290, 331, 334, 439, 625, 649, 667, 748, 757, 763, 829, 878, 883, 898, 997, 1163, 1252, 1279, 1327, 1348, 1351, 1531, 1741, 1827, 1936, 1991, 2050, 2157, 2263, 2278, 2419, 2431, 2539, 2543, 2588, 2635, 2668, 2797, 2836, 2896, 2929, 2971, 2974, 3079, 3121, 3156, 3293, 3319, 3436, 3653, 3796, 3817, 4068, 4078, 4083, 4118, 4372, 4399, 4447, 4481, 4483, 4780, 4801, 4867, 4898, 4972, 5053, 5182, 5230, 5311, 5329, 5401, 5560, 5562, 5713, 5893, 5899, 5975, 6028, 6122, 6124, 6143, 6178, 6186, 6226, 6296, 6343, 6418, 6427, 6571, 6631, 6925, 6994, 7054, 7056, 7303, 7386, 7388, 7396, 7474, 7615, 7723, 7801, 7813, 7822, 7884, 7892, 7969, 8065, 8314, 8368, 8384, 8499, 8629, 8761, 8830, 8878, 8891, 8941, 9124, 9166, 9304, 9409, 9461, 9712, 9739, 9967, 9988, 10000, 10036, 10075, 10147, 10162, 10448, 10542, 10891, 10957, 11056, 11086, 11119, 11123, 11271, 11372, 11485, 11533, 11553, 11665, 11728, 11827, 11884, 11929, 12079, 12169, 12202, 12211, 12283, 12547, 12562, 12587, 12791, 13126, 13141, 13358, 13531, 13613, 13768, 13779, 13792, 13862, 13891, 14095, 14109, 14161, 14188, 14242, 14257, 14275, 14349, 14441, 14524, 14531, 14563, 14614, 14687, 14855, 14939, 14941, 14986, 15046, 15136, 15271, 15343, 15349, 15403, 15493, 15508, 15634, 15679, 15682, 15852, 15997, 16024, 16103, 16131, 16242, 16312, 16534, 16633, 16753, 16756, 16767, 16954, 17011, 17401, 17512, 17518, 17761, 17803, 17833, 17878, 18058, 18061, 18431, 18448, 18514, 18538, 18550, 18757, 19093, 19237, 19309, 19372, 19414, 19444, 19519, 19672, 19678, 19930, 19946, 20002, 20050, 20113, 20218, 20251, 20413, 20491, 20578, 20581, 20708, 20773, 20980, 21052, 21088, 21215, 21282, 21334, 21382, 21398, 21433, 21449, 21453, 21454, 21466, 21514, 21541, 21631, 21683, 21762, 21862, 21871, 21913, 22012, 22132, 22162, 22243, 22245 (k = 1 mod 3 at n=1K, other k at n=100K) | 15978 (99999)
21429 (96772) 18989 (96049) 17592 (83837) 22233 (75716) 12912 (74869) 5811 (72615) 16091 (65850) 18576 (64927) 4482 (63245) |
||
83 | 5 | 2, 3 | none - proven | 2 (8)
1 (5) 3 (2) 4 (1) |
||
84 | 16 | 5, 17 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*84^q - 1) * (m*84^q + 1) odd n: factor of 5 |
none - proven | 1 (17)
14 (8) 11 (7) 8 (4) 12 (3) 15 (1) 13 (1) 10 (1) 7 (1) 6 (1) |
k = 4 and 9 proven composite by partial algebraic factors. |
85 | 173 | 2, 43 | 61 (15K) | 169 (6939)
64 (1253) 105 (403) 112 (394) 97 (287) 109 (230) 16 (171) 27 (160) 93 (90) 145 (77) |
||
86 | 28 | 3, 29 | none - proven | 23 (112)
14 (38) 18 (26) 27 (14) 1 (11) 2 (10) 25 (9) 11 (8) 22 (5) 19 (5) |
||
87 | 21 | 2, 11 | none - proven (primality certificate for k=19) | 19 (372)
9 (91) 16 (17) 18 (15) 5 (15) 13 (11) 11 (10) 1 (7) 7 (6) 12 (5) |
||
88 | 571 | 3, 7, 13, 19 | k = 400:
for even n let n=2*q; factors to: (20*88^q - 1) * (20*88^q + 1) odd n: covering set 3, 7, 13 |
46, 94, 277, 508 (all at n=10K) | 464 (20648)
444 (19708) 544 (8904) 380 (8712) 79 (7665) 477 (5816) 212 (5511) 179 (4545) 346 (2969) 68 (2477) |
|
89 | 4 | 3, 5 | none - proven | 2 (60)
3 (5) 1 (3) |
||
90 | 27 | 7, 13 | All k where k = m^2
and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*90^q - 1) * (m*90^q + 1) odd n: factor of 13 |
none - proven | 6 (20)
11 (10) 10 (10) 13 (6) 15 (5) 12 (4) 7 (4) 24 (3) 1 (3) 20 (2) |
k = 25 proven composite by partial algebraic factors. |
91 | 45 | 2, 23 | none - proven (primality certificate for k=27, primality certificate for k=1, primality certificate for k=37) | 27 (5048)
1 (4421) 37 (159) 15 (14) 43 (6) 39 (6) 31 (6) 24 (5) 20 (4) 36 (3) |
||
92 | 32 | 3, 31 | none - proven (for the k=1 prime, factor N-1 is equivalent to factor 92^438-1) (primality certificate for k=29) | 1 (439)
29 (272) 28 (99) 13 (35) 14 (32) 18 (26) 22 (25) 20 (6) 6 (6) 17 (4) |
||
93 | 189 | 2, 47 | 33, 69, 109, 113, 125, 149, 177 (all at n=8K) | 97 (1179)
29 (496) 92 (476) 46 (434) 121 (271) 141 (262) 101 (142) 122 (126) 85 (86) 166 (66) |
||
94 | 39 | 5, 19 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*94^q - 1) * (m*94^q + 1) odd n: factor of 5 |
29 (1M) | 16 (21951)
37 (254) 13 (163) 14 (154) 7 (95) 34 (54) 25 (41) 24 (12) 26 (9) 36 (7) |
k = 4 and 9 proven composite by partial algebraic factors. |
95 | 5 | 2, 3 | none - proven | 1 (7)
3 (2) 2 (2) 4 (1) |
||
96 | 38995 | 7, 67, 97, 1303 | (Condition 1):
All k where k = m^2 and m = = 22 or 75 mod 97: for even n let k = m^2 and let n = 2*q; factors to: (m*96^q - 1) * (m*96^q + 1) odd n: factor of 97 (Condition 2): All k where k = 6*m^2 and m = = 9 or 88 mod 97: even n: factor of 97 for odd n let k = 6*m^2 and let n=2*q-1; factors to: [m*2^(5q-1)*3^q - 1] * [m*2^(5q-1)*3^q + 1] |
431, 591, 701, 831, 872, 956, 1006, 1126, 1648, 1681, 1810, 2036, 2386, 2424, 2878, 3001, 3431, 3461, 3671, 3856, 3881, 3956, 3996, 4261, 4351, 4366, 4406, 4451, 4461, 5046, 5836, 5918, 6031, 6261, 6481, 6586, 6670, 6786, 7091, 7116, 7121, 7131, 7249, 7274, 7461, 7801, 8016, 8202, 8291, 8546, 8816, 9022, 9131, 9156, 9326, 9441, 9463, 9476, 9677, 9681, 9921, 10036, 10204, 10375, 10453, 10551, 10651, 10721, 11056, 11156, 11196, 11458, 11553, 11766, 11831, 12676, 12901, 13216, 13231, 13288, 13571, 14011, 14061, 14276, 14517, 14551, 14646, 15341, 15461, 15573, 15596, 16176, 16306, 16392, 16586, 16641, 16645, 17116, 17421, 17636, 17653, 17792, 18311, 19136, 19191, 19246, 19486, 19681, 20091, 20396, 20464, 20502, 20936, 21488, 21776, 22541, 22811, 22846, 22931, 23010, 23161, 23271, 23301, 23570, 23766, 24076, 24216, 24386, 24506, 24831, 24916, 24929, 25306, 25706, 25966, 26038, 26161, 26183, 26571, 26772, 26801, 26846, 27045, 27106, 27126, 27450, 27646, 27700, 27741, 28365, 28558, 28774, 28776, 28921, 29093, 29196, 29561, 29681, 30086, 30120, 30151, 30421, 30581, 30662, 31021, 31136, 31936, 32205, 32881, 33099, 33141, 33391, 33406, 33501, 33621, 33701, 33711, 33951, 33986, 34116, 34236, 34436, 34531, 34921, 35016, 35113, 35271, 35406, 35446, 35781, 35966, 36158, 36551, 36945, 36981, 37031, 37036, 37166, 37222, 37471, 37991, 38156, 38301, 38316, 38986 (k = 1 mod 5 and k = 1 mod 19 at n=1K, other k at n=100K) | 3769 (92879)
28907 (89447) 13528 (86114) 19882 (82073) 37155 (76817) 9160 (71178) 5179 (66965) 32960 (60312) 7565 (59052) 4754 (56909) |
k = 484, 5625, 14161, and 29584 proven composite by condition 1.
k = 486 proven composite by condition 2. |
97 | 43 | 3, 5, 7, 37, 139 | 22 (35.8K) | 8 (192335)
16 (1627) 4 (621) 28 (184) 1 (17) 34 (16) 32 (9) 27 (8) 37 (5) 31 (5) |
||
98 | 10 | 3, 11 | none - proven | 1 (13)
5 (10) 7 (3) 4 (3) 8 (2) 2 (2) 9 (1) 6 (1) 3 (1) |
||
99 | 9 | 2, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*99^q - 1) * (m*99^q + 1) odd n: factor of 5 |
none - proven | 5 (135)
3 (4) 1 (3) 7 (2) 8 (1) 6 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
100 | 211 | 7, 13, 37 | All k = m^2 for all n;
factors to: (m*10^n - 1) * (m*10^n + 1) |
none - proven (primality certificate for k=133) | 74 (44709)
133 (5496) 102 (209) 193 (155) 203 (133) 95 (96) 109 (68) 55 (56) 98 (45) 37 (36) |
k = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, and 196 proven composite by full algebraic factors. |
101 | 13 | 2, 3 | none - proven (for the k=5 prime, factor N-1 is equivalent to factor 101^350-1) | 5 (350)
8 (112) 2 (42) 11 (24) 12 (11) 4 (3) 1 (3) 6 (2) 10 (1) 9 (1) |
||
102 | 1635 | 7, 19, 79 | 191, 207, 1082, 1369 (all at n=500K) | 1451 (188973)
1208 (178632) 653 (117255) 1607 (82644) 254 (58908) 1527 (49462) 1037 (43460) 32 (43302) 1296 (37715) 142 (22025) |
||
103 | 25 | 2, 13 | none - proven (primality certificate for k=19, primality certificate for k=22, primality certificate for k=23) | 19 (820)
22 (442) 23 (216) 14 (189) 16 (57) 11 (54) 24 (32) 15 (32) 1 (19) 20 (5) |
||
104 | 4 | 3, 5 | none - proven | 1 (97)
2 (68) 3 (1) |
||
105 | 297 | 2, 37, 149 | All k where k = m^2
and m = = 3 or 5 mod 8: for even n let k = m^2 and let n = 2*q; factors to: (m*57^q - 1) * (m*57^q + 1) odd n: factor of 2 |
73, 137 (both at n=8K) | 148 (3645)
265 (1666) 162 (294) 255 (222) 154 (139) 145 (119) 80 (91) 68 (56) 66 (47) 223 (21) |
k = 9, 25, 121, and 169 proven composite by partial algebraic factors. |
106 | 13624 | 3, 19, 199 | 64, 81, 163, 332, 391, 400, 511, 526, 643, 676, 841, 862, 897, 1024, 1223, 1283, 1417, 1546, 1597, 1713, 1869, 2116, 2248, 2389, 2458, 2605, 2623, 2674, 2743, 2780, 2781, 2965, 3241, 3277, 3336, 3425, 3427, 3478, 3481, 3617, 3622, 3646, 3655, 3746, 3883, 4045, 4067, 4096, 4153, 4177, 4219, 4336, 4339, 4416, 4628, 4666, 4696, 4713, 4722, 5135, 5283, 5395, 5468, 5623, 5692, 5707, 5752, 5776, 5872, 5878, 5971, 5992, 6094, 6100, 6220, 6376, 6421, 6547, 6613, 6716, 6736, 6784, 6832, 6955, 7069, 7156, 7202, 7246, 7273, 7297, 7331, 7336, 7345, 7398, 7496, 7540, 7561, 7744, 7894, 7906, 8023, 8181, 8266, 8323, 8371, 8386, 8428, 8521, 8572, 8586, 8637, 8779, 8788, 8861, 8950, 8956, 8962, 8975, 9031, 9096, 9190, 9294, 9415, 9469, 9634, 9736, 9787, 9796, 9808, 9859, 9877, 9973, 10033, 10072, 10117, 10166, 10186, 10271, 10273, 10446, 10627, 10646, 10651, 10660, 10699, 10876, 10894, 11173, 11278, 11299, 11426, 11506, 11833, 11884, 11901, 12066, 12090, 12145, 12352, 12490, 12627, 12851, 12856, 12916, 12970, 12991, 13162, 13174, 13366, 13374, 13378, 13387, 13497, 13516, 13528, 13543 (all at n=2K) | 913 (1991)
7771 (1952) 13023 (1951) 8561 (1927) 13567 (1850) 12361 (1830) 12910 (1817) 6181 (1800) 2719 (1769) 11639 (1746) |
||
107 | 5 | 2, 3 | none - proven (primality certificate for k=3) | 2 (21910)
3 (4900) 4 (251) 1 (17) |
||
108 | 13406 | 7, 13, 61, 109 | (Condition 1):
All k where k = m^2 and m = = 33 or 76 mod 109: for even n let k = m^2 and let n = 2*q; factors to: (m*108^q - 1) * (m*108^q + 1) odd n: factor of 109 (Condition 2): All k where k = 3*m^2 and m = = 20 or 89 mod 109: even n: factor of 109 for odd n let k = 3*m^2 and let n=2*q-1; factors to: [m*2^(2q-1)*3^(3q-1) - 1] * [m*2^(2q-1)*3^(3q-1) + 1] |
137, 411, 437, 873, 1634, 1769, 1782, 1961, 2508, 2617, 2962, 2963, 3002, 3029, 3474, 3499, 3596, 3646, 4007, 4066, 4084, 4121, 4184, 4328, 4468, 4499, 4744, 4904, 5015, 5142, 5212, 5351, 5625, 5821, 5892, 5923, 5994, 6212, 6284, 6432, 6528, 6570, 6614, 6866, 7107, 7211, 7302, 7304, 7419, 7848, 8037, 8144, 8374, 8383, 8503, 8524, 8638, 8986, 9346, 9852, 10052, 10129, 10136, 10245, 10699, 10926, 11089, 11164, 11278, 11619, 11881, 11918, 12262, 12861, 12863, 13162, 13291, 13297 (k = 5351, 6528, and 13162 at n=6K, other k at n=100K) | 10322 (88080)
1999 (85188) 7557 (84180) 11882 (81547) 3439 (79524) 4686 (79010) 1159 (77107) 3573 (76352) 1465 (75209) 2148 (75018) |
k = 1089 and 5776 proven composite by condition 1.
k = 1200 proven composite by condition 2. |
109 | 9 | 2, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*109^q - 1) * (m*109^q + 1) odd n: factor of 5 |
none - proven | 8 (19)
1 (17) 5 (2) 2 (2) 7 (1) 6 (1) 3 (1) |
k = 4 proven composite by partial algebraic factors. |
110 | 38 | 3, 37 | All k where k = m^2
and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*110^q - 1) * (m*110^q + 1) odd n: factor of 37 |
none - proven | 23 (78120)
17 (2598) 37 (1689) 9 (77) 11 (42) 10 (17) 2 (16) 31 (9) 5 (6) 22 (5) |
k = 36 proven composite by partial algebraic factors. |
111 | 13 | 2, 7 | none - proven | 2 (24)
7 (6) 6 (4) 1 (3) 12 (2) 11 (2) 3 (2) 10 (1) 9 (1) 8 (1) |
||
112 | 1357 | 5, 13, 113 | All k where k = m^2
and m = = 15 or 98 mod 113: for even n let k = m^2 and let n = 2*q; factors to: (m*112^q - 1) * (m*112^q + 1) odd n: factor of 113 |
31, 79, 310, 340, 421, 424, 451, 529, 703, 940, 1018, 1051, 1204 (all at n=7.5K) | 948 (173968)
1268 (50536) 758 (35878) 1353 (7751) 187 (7524) 498 (6038) 9 (5717) 1024 (5681) 619 (5441) 981 (2858) |
k = 225 proven composite by partial algebraic factors. |
113 | 20 | 3, 19 | none - proven | 14 (308)
1 (23) 7 (15) 19 (11) 5 (8) 16 (5) 3 (5) 12 (3) 4 (3) 18 (2) |
||
114 | 24 | 5, 23 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*114^q - 1) * (m*114^q + 1) odd n: factor of 5 |
none - proven | 3 (63)
1 (29) 11 (27) 18 (21) 22 (20) 20 (3) 19 (2) 17 (2) 14 (2) 10 (2) |
k = 4 and 9 proven composite by partial algebraic factors. |
115 | 57 | 2, 29 | 13, 43 (both at n=8K) | 45 (5227)
4 (4223) 51 (2736) 23 (1116) 53 (165) 21 (127) 35 (50) 15 (38) 39 (28) 32 (28) |
||
116 | 14 | 3, 13 | none - proven | 9 (249)
5 (156) 11 (118) 1 (59) 2 (32) 13 (15) 10 (11) 12 (2) 8 (2) 7 (1) |
||
117 | 149 | 2, 5, 37 | 5, 17, 33, 141 (all at n=8K) | 83 (442)
59 (352) 19 (336) 110 (232) 143 (222) 41 (209) 87 (177) 129 (165) 118 (136) 92 (129) |
||
118 | 50 | 7, 17 | 43 (37K) | 27 (860)
29 (599) 18 (393) 6 (210) 22 (191) 8 (85) 19 (72) 7 (52) 42 (30) 37 (27) |
||
119 | 4 | 3, 5 | none - proven | 2 (28)
3 (6) 1 (3) |
||
120 | 166616308 | 11, 13, 1117, 14281 | 384, 386, 419, 483, 551, 672, 824, 846, 890, 901, 991, 1024, 1077, 1095, 1132, 1134, 1255, 1309, 1385, 1394, 1693, 1797, 1921, 2036, 2133, 2177, 2258, 2354, 2386, 2410, 2452, 2650, 2696, 2716, 3004, 3025, 3123, 3178, 3189, 3214, 3290, 3343, 3347, 3400, 3407, 3433, 3596, 3786, 3994, 4003, 4082, 4320, 4399, 4423, 4460, 4500, 4577, 4676, 4685, 4819, 4830, 4839, 4936, 5105, 5125, 5255, 5378, 5630, 5686, 5730, 6112, 6241, 6332, 6357, 6425, 6581, 6676, 6678, 6755, 6821, 6852, 6951, 6982, 6997, 7008, 7413, 7470, 7523, 7545, 7549, 7789, 7803, 7820, 7910, 7985, 8100, 8205, 8464, 8647, 8810, 8812, 8869, 8922, 8964, 8966, 8997, 9010, 9019, 9057, 9070, 9395, 9564, 9626, 9712, 9889, 9921, 9954, 9993 (for k <= 10K) (all at n=1K) | 8063 (997)
6434 (976) 2980 (958) 5180 (938) 164 (878) 4234 (876) 7085 (843) 4390 (833) 9354 (829) 2726 (822) |
||
121 | 100 | 3, 7, 37 | All k = m^2 for all n;
factors to: (m*11^n - 1) * (m*11^n + 1) |
none - proven (primality certificate for k=79) | 62 (13101)
79 (4545) 43 (68) 7 (60) 30 (24) 60 (12) 87 (11) 39 (11) 57 (10) 50 (10) |
k = 1, 4, 9, 16, 25, 36, 49, 64, and 81 proven composite by full algebraic factors. |
122 | 14 | 3, 5, 13 | none - proven | 13 (43)
8 (26) 11 (10) 2 (6) 12 (5) 1 (5) 10 (3) 6 (2) 5 (2) 3 (2) |
||
123 | 13 | 2, 5, 17 | 11 (8K) | 1 (43)
3 (8) 2 (8) 12 (7) 6 (7) 9 (5) 7 (2) 10 (1) 8 (1) 5 (1) |
||
124 | 92881 | 3, 5, 7, 5167 | (Condition 1):
All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*124^q - 1) * (m*124^q + 1) odd n: factor of 5 (Condition 2): All k where k = 31*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 31*m^2 and let n=2*q-1; factors to: [m*2^(2q-1)*31^q - 1] * [m*2^(2q-1)*31^q + 1] |
101, 136, 146, 175, 179, 199, 204, 236, 259, 271, 301, 328, 364, 389, 434, 441, 459, 469, 561, 586, 589, 599, 604, 614, 616, 631, 661, 741, 766, 806, 844, 894, 901, 922, 931, 951, 971, 974, 1013, 1016, 1019, 1021, 1039, 1043, 1046, 1061, 1081, 1114, 1123, 1149, 1156, 1186, 1229, 1231, 1237, 1246, 1249, 1269, 1288, 1336, 1375, 1376, 1384, 1399, 1461, 1496, 1498, 1499, 1509, 1511, 1519, 1522, 1542, 1636, 1654, 1664, 1711, 1719, 1724, 1731, 1741, 1743, 1754, 1766, 1779, 1783, 1784, 1789, 1814, 1824, 1834, 1861, 1904, 1924, 1926, 1931, 1941, 1954, 1969, 1989, 2029, 2041, 2095, 2101, 2109, 2124, 2131, 2161, 2166, 2191, 2194, 2212, 2296, 2306, 2307, 2344, 2364, 2366, 2377, 2416, 2419, 2436, 2479, 2491, 2497, 2529, 2539, 2559, 2572, 2576, 2616, 2656, 2661, 2664, 2666, 2680, 2686, 2731, 2761, 2789, 2804, 2830, 2854, 2864, 2920, 2931, 2971, 2994, 3024, 3034, 3054, 3067, 3076, 3079, 3081, 3096, 3154, 3196, 3214, 3229, 3247, 3261, 3286, 3294, 3316, 3319, 3324, 3329, 3346, 3382, 3421, 3439, 3579, 3604, 3606, 3646, 3649, 3654, 3679, 3704, 3716, 3730, 3734, 3739, 3752, 3771, 3779, 3786, 3789, 3809, 3821, 3829, 3839, 3866, 3942, 3949, 3964, 3986, 4006, 4015, 4039, 4054, 4066, 4084, 4089, 4091, 4094, 4096, 4129, 4134, 4153, 4207, 4229, 4231, 4234, 4236, 4311, 4319, 4331, 4375, 4376, 4384, 4424, 4429, 4476, 4486, 4506, 4512, 4526, 4546, 4554, 4609, 4646, 4651, 4684, 4714, 4716, 4771, 4786, 4796, 4801, 4811, 4816, 4831, 4854, 4879, 4885, 4909, 4911, 4946, 4961, 4976, 4997, 5009, 5020, 5026, 5032, 5049, 5101, 5116, 5149, 5152, 5164, 5186, 5209, 5224, 5226, 5246, 5269, 5274, 5283, 5314, 5334, 5396, 5404, 5416, 5431, 5459, 5499, 5526, 5539, 5554, 5611, 5626, 5630, 5632, 5679, 5684, 5696, 5699, 5710, 5746, 5751, 5764, 5784, 5830, 5840, 5844, 5911, 5926, 5934, 5946, 5956, 5959, 5974, 5979, 5982, 6000, 6019, 6024, 6049, 6094, 6098, 6106, 6154, 6181, 6184, 6186, 6187, 6189, 6191, 6212, 6214, 6223, 6226, 6246, 6251, 6261, 6309, 6318, 6336, 6361, 6374, 6376, 6381, 6384, 6424, 6434, 6439, 6449, 6466, 6469, 6506, 6514, 6571, 6589, 6625, 6644, 6759, 6799, 6826, 6849, 6856, 6886, 6901, 6919, 6931, 6961, 6971, 6976, 6986, 7006, 7051, 7062, 7066, 7092, 7096, 7104, 7114, 7134, 7144, 7146, 7195, 7221, 7232, 7261, 7274, 7276, 7284, 7301, 7309, 7311, 7329, 7369, 7389, 7396, 7423, 7453, 7456, 7478, 7479, 7494, 7516, 7521, 7522, 7523, 7544, 7551, 7591, 7600, 7616, 7617, 7619, 7674, 7682, 7714, 7739, 7741, 7756, 7762, 7771, 7779, 7801, 7811, 7861, 7884, 7885, 7897, 7909, 7951, 8006, 8041, 8044, 8046, 8111, 8124, 8129, 8137, 8146, 8149, 8161, 8166, 8201, 8203, 8231, 8248, 8249, 8250, 8266, 8286, 8326, 8334, 8339, 8361, 8369, 8383, 8394, 8419, 8429, 8431, 8441, 8454, 8461, 8476, 8479, 8491, 8499, 8524, 8529, 8536, 8551, 8564, 8581, 8606, 8641, 8655, 8674, 8683, 8691, 8719, 8724, 8730, 8779, 8794, 8809, 8811, 8839, 8849, 8854, 8869, 8871, 8934, 8936, 8974, 8979, 8980, 8986, 9001, 9034, 9064, 9069, 9076, 9115, 9136, 9142, 9166, 9172, 9175, 9178, 9199, 9236, 9244, 9247, 9256, 9260, 9264, 9276, 9314, 9334, 9336, 9344, 9349, 9366, 9382, 9401, 9436, 9454, 9459, 9463, 9496, 9516, 9524, 9526, 9551, 9562, 9564, 9571, 9574, 9586, 9634, 9646, 9661, 9728, 9739, 9761, 9799, 9826, 9831, 9844, 9907, 9909, 9931, 9966, 9976 (for k <= 10K) (all at n=1K) | 1194 (998)
1611 (989) 659 (986) 3996 (985) 6314 (984) 6101 (983) 4903 (978) 3941 (977) 6011 (975) 6179 (972) |
k = 2^2, 3^2, 7^2, 8^2, 12^2, 13^2, 17^2, 18^2 (etc. pattern repeating every 5m) proven composite by condition 1.
k = 31*1^2, 31*4^2, 31*6^2, 31*9^2, 31*11^2, 31*14^2, 31*16^2, 31*19^2 (etc. pattern repeating every 5m) proven composite by condition 2. |
125 | 8 | 3, 7 | All k = m^3 for all n;
factors to: (m*5^n - 1) * (m^2*25^n + m*5^n + 1) |
none - proven | 6 (24)
7 (5) 3 (3) 5 (2) 2 (2) 4 (1) |
k = 1 proven composite by full algebraic factors. |
126 | 480821 | 13, 19, 127, 829 | 406, 1855, 2707, 2744, 3285, 3566, 3573, 3631, 3721, 4416, 4436, 4596, 5081, 5285, 6026, 6041, 6605, 7075, 7107, 7580, 7876, 8061, 8256, 8323, 8336, 8836, 9166, 9524, 9606, 9651, 9936, 11366, 11475, 11493, 11696, 12013, 12416, 12594, 13006, 13016, 13027, 13302, 13389, 13824, 14270, 14831, 15366, 15596, 15752, 15898, 16636, 16974, 17351, 17436, 17826, 17920, 18001, 18058, 18162, 18430, 18571, 18617, 19686, 19996, 20216, 20575, 20907, 20983, 21306, 21316, 22031, 22389, 22790, 22837, 23390, 23466, 23748, 23903, 24001, 24176, 24706, 25106, 25886, 26326, 26490, 27296, 28791, 28928, 29001, 29012, 29551, 29719 (for k <= 30K) (k = 1 mod 5 at n=1K, other k at n=25K) | 8099 (23965)
24832 (23531) 28659 (23470) 20497 (22584) 21342 (22321) 6990 (21006) 26279 (19646) 18638 (17149) 27730 (16804) 29617 (16038) |
||
127 | 2593 | 2, 5, 17, 137 | 13, 17, 25, 27, 33, 35, 79, 83, 91, 113, 121, 139, 159, 179, 191, 231, 233, 235, 236, 237, 239, 250, 251, 264, 279, 288, 293, 333, 353, 361, 367, 379, 443, 451, 459, 471, 473, 511, 513, 517, 523, 531, 537, 551, 553, 557, 561, 597, 599, 604, 617, 631, 639, 649, 659, 679, 699, 715, 725, 731, 733, 737, 739, 747, 751, 755, 763, 773, 778, 783, 797, 809, 838, 848, 863, 871, 895, 919, 937, 939, 950, 953, 964, 982, 997, 999, 1013, 1019, 1025, 1031, 1037, 1039, 1043, 1051, 1106, 1107, 1117, 1119, 1127, 1157, 1173, 1185, 1196, 1199, 1211, 1231, 1232, 1233, 1245, 1253, 1259, 1279, 1288, 1291, 1313, 1327, 1333, 1335, 1337, 1347, 1353, 1359, 1371, 1377, 1401, 1407, 1417, 1421, 1429, 1432, 1439, 1473, 1481, 1491, 1513, 1525, 1539, 1549, 1551, 1573, 1577, 1579, 1589, 1593, 1595, 1597, 1599, 1611, 1612, 1618, 1631, 1639, 1641, 1661, 1677, 1693, 1699, 1709, 1711, 1731, 1732, 1737, 1751, 1771, 1792, 1793, 1803, 1837, 1839, 1903, 1911, 1921, 1928, 1933, 1936, 1939, 1943, 1951, 1957, 1959, 1999, 2013, 2017, 2032, 2039, 2045, 2072, 2073, 2079, 2092, 2097, 2099, 2129, 2155, 2168, 2179, 2191, 2197, 2215, 2231, 2247, 2253, 2273, 2279, 2303, 2313, 2339, 2367, 2377, 2389, 2411, 2427, 2431, 2433, 2479, 2501, 2543, 2548, 2559, 2565, 2573, 2583 (all at n=1K) | 667 (1000)
1775 (994) 2497 (989) 2199 (972) 1759 (936) 2015 (910) 343 (904) 1113 (899) 1962 (893) 1543 (872) |
||
128 | 44 | 3, 43 | All k = m^7 for all n;
factors to: (m*2^n - 1) * (m^6*64^n + m^5*32^n + m^4*16^n + m^3*8^n + m^2*4^n + m*2^n + 1) |
none - proven | 29 (211192)
23 (2118) 26 (1442) 37 (699) 16 (459) 42 (246) 35 (98) 30 (66) 36 (59) 12 (46) |
k = 1 proven composite by full algebraic factors. |
129 | 14 | 5, 13 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*129^q - 1) * (m*129^q + 1) odd n: factor of 5 |
none - proven | 12 (228)
1 (5) 5 (3) 7 (2) 13 (1) 11 (1) 10 (1) 8 (1) 6 (1) 3 (1) |
k = 4 and 9 proven composite by partial algebraic factors. |
130 | 2563 | 3, 7, 811 | 64, 247, 253, 254, 302, 597, 739, 799, 877, 918, 961, 1003, 1129, 1159, 1178, 1255, 1258, 1423, 1702, 1754, 1773, 1807, 1849, 2227, 2304, 2311, 2319, 2381, 2479, 2494, 2536 (all at n=2K) | 148 (1894)
1555 (1886) 1049 (1881) 2242 (1850) 2326 (1749) 1114 (1724) 523 (1670) 1796 (1650) 557 (1525) 1483 (1490) |
||
131 | 5 | 2, 3 | none - proven | 2 (4)
1 (3) 3 (2) 4 (1) |
||
132 | 20 | 7, 19 | none - proven | 18 (62)
1 (47) 3 (38) 8 (11) 19 (9) 4 (3) 13 (2) 7 (2) 6 (2) 17 (1) |
||
133 | 17 | 2, 5, 29 | none - proven | 1 (13)
11 (5) 2 (4) 12 (3) 9 (3) 7 (3) 4 (3) 13 (2) 5 (2) 16 (1) |
||
134 | 4 | 3, 5 | none - proven | 1 (5)
2 (2) 3 (1) |
||
135 | 33 | 2, 17 | All k where k = m^2
and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*135^q - 1) * (m*135^q + 1) odd n: factor of 17 |
none - proven (for the k=1 prime, factor N-1 is equivalent to factor 135^1170-1) (the k=25 prime is proven prime by N-1, and primality certificate for the large prime factor of N-1) (primality certificate for k=27, primality certificate for k=29) | 27 (3250)
32 (2091) 1 (1171) 29 (697) 18 (569) 25 (317) 7 (26) 26 (13) 17 (11) 23 (6) |
k = 16 proven composite by partial algebraic factors. |
136 | 22195 | 3, 7, 43, 137 | All k where k = m^2
and m = = 37 or 100 mod 137: for even n let k = m^2 and let n = 2*q; factors to: (m*136^q - 1) * (m*136^q + 1) odd n: factor of 137 |
testing not started | testing not started | k = 1369 and 10000 proven composite by partial algebraic factors. |
137 | 17 | 2, 3 | All k where k = m^2
and m = = 3 or 5 mod 8: for even n let k = m^2 and let n = 2*q; factors to: (m*137^q - 1) * (m*137^q + 1) odd n: factor of 2 |
11, 13, 15 (all at n=2K) | 16 (231)
3 (27) 5 (12) 1 (11) 10 (5) 14 (4) 12 (2) 8 (2) 2 (2) 7 (1) |
k = 9 proven composite by partial algebraic factors. |
138 | 1806 | 5, 13, 139 | 408, 688, 831, 1074, 1743 (all at n=300K) | 421 (272919)
773 (249730) 372 (103160) 1368 (66926) 1087 (55582) 1258 (54256) 557 (52295) 359 (47249) 291 (35886) 9 (35685) |
||
139 | 6 | 5, 7 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*139^q - 1) * (m*139^q + 1) odd n: factor of 5 |
none - proven (for the k=1 prime, factor N-1 is equivalent to factor 139^162-1) | 1 (163)
3 (114) 5 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
140 | 46 | 3, 47 | none - proven | 38 (448)
11 (108) 1 (79) 5 (30) 29 (18) 32 (16) 14 (16) 33 (12) 40 (9) 41 (8) |
||
141 | 285 | 2, 71 | none - proven (primality certificate for k=201, primality certificate for k=93, primality certificate for k=197, primality certificate for k=133, primality certificate for k=16, primality certificate for k=203, primality certificate for k=283, primality certificate for k=73, primality certificate for k=147) | 201 (5279)
93 (1860) 197 (1052) 133 (818) 16 (573) 203 (250) 283 (244) 73 (237) 147 (209) 144 (171) |
||
142 | 12 | 11, 13 | none - proven (primality certificate for k=1) | 1 (1231)
3 (26) 11 (14) 8 (7) 6 (3) 4 (3) 10 (2) 9 (1) 7 (1) 5 (1) |
||
143 | 5 | 2, 3 | none - proven | 3 (16)
1 (3) 2 (2) 4 (1) |
||
144 | 59 | 5, 29 | All k = m^2 for all n;
factors to: (m*12^n - 1) * (m*12^n + 1) |
none - proven | 39 (964)
30 (519) 23 (134) 46 (97) 58 (35) 2 (24) 57 (20) 15 (10) 54 (8) 34 (8) |
k = 1, 4, 9, 16, 25, 36, and 49 proven composite by full algebraic factors. |
145 | 1169 | 2, 73 | (Condition 1):
All k where k = m^2 and m = = 27 or 46 mod 73: for even n let k = m^2 and let n = 2*q; factors to: (m*145^q - 1) * (m*145^q + 1) odd n: factor of 73 (Condition 2): All k where k = m^2 and m = = 7 or 9 mod 16: for even n let k = m^2 and let n = 2*q; factors to: (m*145^q - 1) * (m*145^q + 1) odd n: factor of 2 |
72, 113, 181, 303, 450, 523, 673, 769, 865, 1094, 1160 (all at n=2K) | 8 (6368)
863 (1480) 838 (1460) 257 (1269) 1025 (1223) 347 (737) 817 (730) 641 (723) 685 (589) 759 (575) |
k = 729 proven composite by condition 1.
k = 49, 81, 529, and 625 proven composite by condition 2. |
146 | 8 | 3, 7 | none - proven | 5 (30)
2 (16) 1 (7) 4 (5) 3 (3) 6 (2) 7 (1) |
||
147 | 73 | 2, 37 | All k where k = m^2
and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*147^q - 1) * (m*147^q + 1) odd n: factor of 37 |
49, 51, 55, 58, 59, 63 (all at n=2K) | 11 (2042)
33 (619) 64 (169) 19 (140) 38 (131) 71 (114) 12 (112) 48 (96) 22 (48) 15 (46) |
k = 36 proven composite by partial algebraic factors. |
148 | 1936 | 5, 13, 149 | All k where k = m^2
and m = = 44 or 105 mod 149: for even n let k = m^2 and let n = 2*q; factors to: (m*148^q - 1) * (m*148^q + 1) odd n: factor of 149 |
215, 256, 304, 346, 367, 448, 577, 580, 595, 636, 691, 694, 746, 801, 831, 898, 934, 967, 1015, 1048, 1052, 1134, 1204, 1234, 1249, 1256, 1258, 1307, 1341, 1351, 1426, 1489, 1516, 1594, 1600, 1604, 1621, 1743, 1750, 1852, 1901 (all at n=2K) | 1554 (1991)
1312 (1967) 1381 (1942) 597 (1895) 417 (1891) 1357 (1890) 541 (1762) 281 (1738) 1228 (1657) 1841 (1586) |
No k's proven composite by algebraic factors. |
149 | 4 | 3, 5 | none - proven | 1 (7)
2 (4) 3 (1) |
||
150 | 49074 | 7, 31, 103, 151 | 206, 841, 1509, 1962, 3229, 4682, 5245, 5890, 6039, 6353, 6494, 7851, 9061, 9260, 11324, 11477, 11516, 12839, 14373, 16309, 16404, 16424, 16977, 17603, 18859, 19027, 19191, 19226, 20468, 20988, 22238, 22349, 22977, 23396, 23706, 23944, 24614, 24852, 25488, 25704, 25829, 26685, 27032, 28389, 28822, 30050, 30993, 31738, 31812, 33521, 34429, 34707, 35066, 35344, 36709, 36994, 37137, 39108, 39141, 39712, 39736, 40020, 42012, 42128, 43060, 43789, 44346, 44645, 44832, 46257, 46616, 47717, 48138 (k = 30993 and 31738 at n=2K, other k at n=100K) | 17554 (99646)
32797 (97430) 32399 (96963) 37966 (96107) 10505 (93910) 42643 (93875) 5674 (92155) 6492 (90168) 32135 (90000) 31409 (89441) |
||
151 | 37 | 2, 19 | 9, 25 (both at n=2K) | 3 (716)
34 (45) 29 (25) 22 (20) 4 (15) 27 (14) 1 (13) 16 (9) 13 (9) 23 (8) |
||
152 | 16 | 3, 17 | none - proven (with probable primes that have not been certified: k = 1) | 14 (343720)
1 (270217) 2 (796) 13 (23) 11 (14) 5 (12) 10 (5) 3 (3) 15 (2) 8 (2) |
||
153 | 34 | 7, 11 | (Condition 1):
All k where k = m^2 and m = = 3 or 5 mod 8: for even n let k = m^2 and let n = 2*q; factors to: (m*153^q - 1) * (m*153^q + 1) odd n: factor of 2 (Condition 2): All k where k = 17*m^2 and m = = 1 or 7 mod 8: even n: factor of 2 for odd n let k = 17*m^2 and let n=2*q-1; factors to: [m*3^(2q-1)*17^q - 1] * [m*3^(2q-1)*17^q + 1] |
none - proven | 12 (21659)
21 (70) 27 (44) 22 (23) 32 (8) 15 (5) 20 (4) 4 (3) 1 (3) 30 (2) |
k = 9 and 25 proven composite by condition 1.
k = 17 proven composite by condition 2. |
154 | 61 | 5, 31 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*154^q - 1) * (m*154^q + 1) odd n: factor of 5 |
none - proven (primality certificate for k=19) | 6 (1989)
39 (326) 19 (324) 24 (106) 14 (78) 29 (62) 54 (30) 36 (7) 31 (7) 21 (7) |
k = 4, 9, and 49 proven composite by partial algebraic factors. |
155 | 5 | 2, 3 | none - proven | 1 (3)
3 (2) 2 (2) 4 (1) |
||
156 | unknown (>10^9, <=2113322677) | unknown | (Condition 1):
All k where k = m^2 and m = = 28 or 129 mod 157: for even n let k = m^2 and let n = 2*q; factors to: (m*156^q - 1) * (m*156^q + 1) odd n: factor of 157 (Condition 2): All k where k = 39*m^2 and m = = 56 or 101 mod 157: even n: factor of 157 for odd n let k = 39*m^2 and let n=2*q-1; factors to: [m*2^(2q-1)*39^q - 1] * [m*2^(2q-1)*39^q + 1] |
testing not started | testing not started | k = 28^2, 129^2, 185^2, 286^2 (etc. pattern repeating every 157m) proven composite by condition 1.
k = 39*56^2, 39*101^2, 39*213^2, 39*258^2 (etc. pattern repeating every 157m) proven composite by condition 2. |
157 | 17 | 2, 5, 29 | none - proven | 8 (56)
15 (49) 4 (45) 7 (32) 1 (17) 13 (10) 14 (7) 16 (5) 5 (4) 12 (2) |
||
158 | 52 | 3, 53 | 29, 44 (both at n=500K) | 47 (273942)
34 (5223) 46 (147) 41 (94) 38 (74) 39 (49) 7 (39) 9 (35) 20 (34) 8 (20) |
||
159 | 9 | 2, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*159^q - 1) * (m*159^q + 1) odd n: factor of 5 |
none - proven (primality certificate for k=3) | 3 (2160)
8 (22) 1 (13) 7 (6) 6 (1) 5 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
160 | 22 | 7, 23 | none - proven | 20 (7570)
12 (11) 6 (8) 1 (7) 5 (3) 4 (3) 13 (2) 10 (2) 2 (2) 21 (1) |
||
161 | 65 | 2, 3 | none - proven (primality certificate for k=55) | 52 (549)
50 (328) 32 (316) 2 (228) 55 (153) 49 (103) 40 (67) 53 (46) 59 (36) 20 (26) |
||
162 | 3259 | 5, 163, 181 | 274, 302, 456, 1205, 1358, 1588, 1828, 2118, 2178, 2297, 2423, 2703, 2841, 2997, 3144, 3249 (k = 2118 and 2841 at n=300K, other k at n=2K) | 2018 (194314)
2954 (95124) 1308 (82803) 1607 (28018) 58 (13758) 2809 (12303) 423 (8898) 3098 (8723) 653 (8335) 1781 (8327) |
||
163 | 81 | 2, 41 | 11, 37, 39, 57, 64 (all at n=2K) | 4 (2285)
45 (1863) 75 (1000) 41 (955) 42 (775) 46 (249) 2 (84) 29 (37) 63 (36) 72 (24) |
||
164 | 4 | 3, 5 | none - proven | 1 (3)
2 (2) 3 (1) |
||
165 | 79 | 7, 13, 43 | 65 (15K) | 53 (1174)
45 (184) 49 (171) 6 (86) 44 (71) 60 (67) 50 (41) 78 (29) 16 (17) 41 (13) |
||
166 | 4174 | 3, 7, 13, 167 | 79, 187, 196, 222, 322, 337, 387, 424, 472, 556, 565, 571, 610, 615, 640, 759, 888, 946, 982, 1033, 1057, 1087, 1249, 1321, 1550, 1609, 1759, 1846, 1849, 1942, 1963, 2003, 2047, 2071, 2096, 2152, 2170, 2302, 2313, 2362, 2501, 2526, 2554, 2566, 2588, 2614, 2673, 2809, 3166, 3234, 3349, 3418, 3467, 3481, 3493, 3501, 3502, 3508, 3526, 3541, 3642, 3736, 3899, 3962, 3991, 4006, 4134 (all at n=2K) | 3106 (1861)
1969 (1823) 1789 (1796) 1602 (1770) 4042 (1732) 823 (1698) 919 (1651) 3424 (1597) 2802 (1583) 2929 (1528) |
||
167 | 5 | 2, 3 | none - proven | 4 (1865)
2 (8) 3 (6) 1 (3) |
||
168 | 4744 | 5, 13, 17, 73 | (Condition 1):
All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*168^q - 1) * (m*168^q + 1) odd n: factor of 13 (Condition 2): All k where k = 42*m^2 and m = = 3 or 10 mod 13: even n: factor of 13 for odd n let k = 42*m^2 and let n=2*q-1; factors to: [m*2^(2q-1)*42^q - 1] * [m*2^(2q-1)*42^q + 1] |
53, 495, 584, 586, 948, 1364, 1416, 1429, 1512, 1626, 1741, 1743, 1754, 1938, 2172, 2237, 2263, 2599, 2627, 2848, 2852, 3067, 3106, 3119, 3238, 3314, 3407, 3574, 3678, 3769, 3795, 3797, 3844, 4016, 4328, 4382, 4549, 4614, 4642, 4668, 4707, 4723 (k = 2172 at n=2K, other k at n=100K) | 1689 (68676)
3309 (63795) 4471 (54466) 4185 (53498) 2846 (50670) 1717 (38259) 1829 (34296) 2885 (34186) 2942 (33546) 2523 (31457) |
k = 25, 64, 324, 441, 961, 1156, 1936, 2209, 3249, and 3600 proven composite by condition 1.
k = 378 and 4200 proven composite by condition 2. |
169 | 16 | 5, 17 | All k = m^2 for all n;
factors to: (m*13^n - 1) * (m*13^n + 1) |
none - proven | 14 (2)
13 (2) 3 (2) 15 (1) 12 (1) 11 (1) 10 (1) 8 (1) 7 (1) 6 (1) |
k = 1, 4, and 9 proven composite by full algebraic factors. |
170 | 20 | 3, 19 | none - proven | 2 (166428)
8 (15422) 18 (360) 11 (108) 5 (38) 1 (17) 13 (13) 9 (7) 7 (3) 4 (3) |
||
171 | 85 | 2, 43 | 15, 51, 75 (all at n=2K) | 5 (2925)
1 (181) 11 (138) 68 (83) 42 (72) 7 (68) 3 (60) 73 (51) 61 (45) 23 (32) |
||
172 | 235 | 3, 7, 13 | 22, 127, 133, 184, 219 (k = 219 at n=300K, other k at n=2K) | 30 (1160)
196 (749) 164 (603) 139 (573) 200 (468) 230 (231) 148 (103) 103 (95) 100 (89) 217 (80) |
||
173 | 13 | 2, 3 | 11 (6K) | 5 (54)
7 (15) 2 (4) 10 (3) 1 (3) 12 (2) 8 (2) 6 (2) 3 (2) 9 (1) |
||
174 | 6 | 5, 7 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*174^q - 1) * (m*174^q + 1) odd n: factor of 5 |
none - proven (primality certificate for k=1) | 1 (3251)
5 (2) 3 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
175 | 21 | 2, 11 | none - proven (the k=10 prime is proven prime by N+1, and for the large prime factor of N+1, factor N-1 is equivalent to factor 175^136-1) (primality certificate for k=11) | 11 (3048)
10 (136) 3 (90) 16 (17) 5 (13) 18 (10) 15 (8) 14 (7) 1 (5) 19 (2) |
||
176 | 58 | 3, 59 | none - proven | 34 (79)
26 (20) 22 (19) 53 (16) 50 (12) 32 (12) 29 (12) 25 (9) 4 (9) 43 (7) |
||
177 | 209 | 2, 5, 13 | All k where k = m^2
and m = = 7 or 9 mod 16: for even n let k = m^2 and let n = 2*q; factors to: (m*177^q - 1) * (m*177^q + 1) odd n: factor of 2 |
25, 161, 193, 197 (all at n=2K) | 64 (340147)
36 (2957) 44 (1711) 163 (963) 97 (609) 33 (431) 179 (383) 200 (288) 58 (219) 172 (200) |
k = 49 and 81 proven composite by partial algebraic factors. |
178 | 22 | 3, 5, 7, 13, 97 | 4 (13K) | 19 (13655)
11 (177) 6 (118) 21 (89) 14 (44) 3 (14) 17 (12) 13 (8) 7 (4) 16 (3) |
||
179 | 4 | 3, 5 | none - proven | 1 (19)
3 (16) 2 (2) |
||
180 | 7674582 | 7, 31, 181, 1051 | (Condition 1):
All k where k = m^2 and m = = 19 or 162 mod 181: for even n let k = m^2 and let n = 2*q; factors to: (m*180^q - 1) * (m*180^q + 1) odd n: factor of 181 (Condition 2): All k where k = 5*m^2 and m = = 67 or 114 mod 181: even n: factor of 181 for odd n let k = 5*m^2 and let n=2*q-1; factors to: [m*6^(2q-1)*5^q - 1] * [m*6^(2q-1)*5^q + 1] |
testing not started | testing not started | k = 19^2, 162^2, 200^2, 343^2 (etc. pattern repeating every 181m) proven composite by condition 1.
k = 5*67^2, 5*114^2, 5*248^2, 5*295^2 (etc. pattern repeating every 181m) proven composite by condition 2. |
181 | 25 | 2, 13 | 5, 21 (k = 5 at n=21K, k = 21 at n=12K) | 14 (29)
1 (17) 12 (8) 24 (5) 10 (5) 9 (5) 15 (3) 20 (2) 13 (2) 6 (2) |
||
182 | 62 | 3, 61 | none - proven (for the k=1 prime, factor N-1 is equivalent to factor 182^166-1) | 43 (502611)
26 (990) 29 (632) 54 (329) 7 (209) 1 (167) 44 (152) 58 (127) 47 (122) 59 (96) |
||
183 | 45 | 2, 23 | none - proven (for the k=1 prime, factor N-1 is equivalent to factor 183^222-1) (the k=37 prime is proven prime by N-1, and primality certificate for the large prime factor of N-1) (primality certificate for k=13, primality certificate for k=23, primality certificate for k=17) | 13 (581)
23 (534) 1 (223) 17 (175) 37 (155) 15 (42) 27 (40) 26 (37) 21 (27) 42 (11) |
||
184 | 36 | 5, 37 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*184^q - 1) * (m*184^q + 1) odd n: factor of 5 |
none - proven (with probable primes that have not been certified: k = 1) | 1 (16703)
28 (85) 7 (32) 16 (21) 11 (15) 19 (10) 24 (8) 14 (8) 22 (7) 34 (6) |
k = 4 and 9 proven composite by partial algebraic factors. |
185 | 17 | 2, 3 | All k where k = m^2
and m = = 3 or 5 mod 8: for even n let k = m^2 and let n = 2*q; factors to: (m*185^q - 1) * (m*185^q + 1) odd n: factor of 2 |
1 (66.3K) | 10 (6783)
12 (8) 8 (8) 14 (4) 11 (4) 5 (4) 16 (3) 15 (2) 2 (2) 13 (1) |
k = 9 proven composite by partial algebraic factors. |
186 | 67 | 11, 17 | All k where k = m^2
and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*186^q - 1) * (m*186^q + 1) odd n: factor of 17 |
36 (13K) | 12 (112717)
32 (388) 43 (44) 51 (32) 44 (14) 35 (13) 52 (11) 58 (9) 42 (7) 1 (7) |
k = 16 proven composite by partial algebraic factors. |
187 | 51 | 2, 5, 13 | 13, 27, 33, 39 (all at n=2K) | 17 (1125)
7 (510) 43 (136) 11 (110) 31 (74) 48 (71) 1 (37) 10 (16) 18 (12) 23 (10) |
||
188 | 8 | 3, 7 | none - proven | 6 (950)
5 (40) 7 (7) 1 (3) 2 (2) 4 (1) 3 (1) |
||
189 | 9 | 2, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*189^q - 1) * (m*189^q + 1) odd n: factor of 5 |
none - proven | 6 (3)
2 (3) 1 (3) 5 (2) 8 (1) 7 (1) 3 (1) |
k = 4 proven composite by partial algebraic factors. |
190 | 626861 | 13, 89, 191, 1753 | testing not started | testing not started | ||
191 | 5 | 2, 3 | none - proven | 2 (970)
1 (17) 4 (5) 3 (2) |
||
192 | 13897 | 5, 73, 193 | All k where k = m^2
and m = = 81 or 112 mod 193: for even n let k = m^2 and let n = 2*q; factors to: (m*192^q - 1) * (m*192^q + 1) odd n: factor of 193 |
253, 311, 593, 894, 898, 1268, 1422, 1704, 2118, 2264, 2315, 2324, 2396, 2441, 2909, 3092, 3282, 3303, 3323, 3719, 3859, 4038, 4062, 4078, 4104, 4164, 4247, 4304, 4372, 4426, 4618, 4679, 5132, 5173, 5523, 5547, 5584, 5731, 5758, 5761, 5789, 5967, 5984, 6083, 6175, 6177, 6205, 6261, 6263, 6297, 6353, 6354, 6484, 6547, 6558, 6746, 6789, 6889, 6939, 7096, 7407, 7528, 7549, 7591, 7756, 7889, 7913, 7931, 7984, 8187, 8214, 8248, 8347, 8361, 8382, 8493, 8537, 8988, 9091, 9111, 9208, 9402, 9689, 9883, 10037, 10063, 10162, 10349, 10396, 10423, 10488, 10657, 10817, 10988, 11002, 11213, 11488, 11933, 12132, 12157, 12234, 12317, 12424, 12716, 12782, 12797, 12906, 12983, 12984, 13358, 13484, 13605, 13623, 13738, 13798 (k = 5731 and 8214 at n=2K, other k at n=100K) | 10909 (89859)
2486 (88582) 49 (88335) 2258 (86531) 7511 (85174) 12732 (85108) 12807 (84820) 9344 (83216) 1023 (78795) 2423 (77515) |
k = 6561 and 12544 proven composite by partial algebraic factors. |
193 | 484 | 3, 5, 7, 13, 97 | All k where k = m^2
and m = = 22 or 75 mod 97: for even n let k = m^2 and let n = 2*q; factors to: (m*193^q - 1) * (m*193^q + 1) odd n: factor of 97 |
30, 58, 95, 106, 116, 134, 169, 184, 207, 226, 272, 302, 348, 379, 449, 463 (all at n=2K) | 466 (1986)
431 (1794) 297 (1700) 387 (1638) 93 (1473) 136 (1018) 121 (849) 408 (725) 256 (417) 135 (413) |
No k's proven composite by algebraic factors. |
194 | 4 | 3, 5 | none - proven | 2 (42)
3 (3) 1 (3) |
||
195 | 13 | 2, 7 | none - proven | 6 (38)
1 (11) 11 (4) 4 (3) 7 (2) 3 (2) 12 (1) 10 (1) 9 (1) 8 (1) |
||
196 | 1267 | 3, 61, 211 | All k = m^2 for all n;
factors to: (m*14^n - 1) * (m*14^n + 1) |
198, 202, 223, 423, 562, 617, 647, 735, 808, 976, 1183 (all at n=2K) | 5 (9849)
947 (1797) 807 (1630) 973 (1574) 342 (1548) 1111 (1455) 865 (649) 877 (639) 1087 (541) 962 (485) |
k = 1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2, 10^2, 11^2, 12^2, 13^2, 14^2, 15^2, 16^2, etc. proven composite by full algebraic factors. |
197 | 10 | 3, 11 | none - proven (primality certificate for k=7) | 7 (249)
1 (31) 5 (10) 8 (4) 3 (4) 2 (2) 9 (1) 6 (1) 4 (1) |
||
198 | 3662 | 7, 13, 433 | 81, 172, 424, 464, 484, 529, 991, 1037, 1054, 1262, 1283, 1792, 1856, 1920, 2253, 2272, 2304, 2445, 2577, 2787, 2811, 2934, 3103, 3207, 3305, 3329, 3342, 3602, 3649 (all at n=100K) | 2661 (95399)
1284 (73379) 807 (50662) 2791 (48837) 2187 (43879) 2388 (43718) 848 (40132) 947 (36807) 3420 (35891) 1922 (31592) |
||
199 | 9 | 2, 5 | All k where k = m^2
and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*199^q - 1) * (m*199^q + 1) odd n: factor of 5 |
none - proven (for the k=1 prime, factor N-1 is equivalent to factor 199^576-1) | 1 (577)
7 (104) 3 (24) 8 (5) 5 (3) 6 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
200 | 68 | 3, 67 | none - proven (with probable primes that have not been certified: k = 1) | 38 (131900)
58 (102363) 53 (45666) 51 (44252) 23 (31566) 19 (29809) 1 (17807) 13 (12053) 37 (597) 62 (126) |
||
256 | 100 | 3, 7, 13 | All k = m^2 for all n;
factors to: (m*16^n - 1) * (m*16^n + 1) |
none - proven | 74 (319)
47 (228) 42 (224) 92 (143) 68 (87) 61 (54) 35 (28) 65 (24) 70 (18) 75 (17) |
k = 1, 4, 9, 16, 25, 36, 49, 64, and 81 proven composite by full algebraic factors. |
512 | 14 | 3, 5, 13 | All k = m^3 for all n;
factors to: (m*8^n - 1) * (m^2*64^n + m*8^n + 1) |
none - proven | 4 (2215)
13 (2119) 9 (7) 11 (6) 6 (6) 5 (2) 3 (2) 2 (2) 12 (1) 10 (1) |
k = 1 and 8 proven composite by full algebraic factors. |
1024 | 81 | 5, 41 | All k = m^2 for all n; factors to:
(m*32^n - 1) * (m*32^n + 1) -or- All k = m^5 for all n; factors to: (m*4^n - 1) * (m^4*256^n + m^3*64^n + m^2*16^n + m*4^n + 1) |
29, 31, 56, 61 (k = 29 at n=1M, other k at n=3K) | 74 (666084)
39 (4070) 43 (2290) 13 (1167) 78 (424) 65 (93) 69 (54) 3 (47) 71 (41) 44 (36) |
k = 1, 4, 9, 16, 25, 32, 36, 49, and 64 proven composite by full algebraic factors. |