Renewable energy/Solar thermal

About solar collector

edit

A solar thermal collector is a solar collector designed to collect heat by absorbing sunlight. The term is applied to solar hot water panels, but may also be used to denote more complex installations such as solar parabolic, solar trough and solar towers or simpler installations such as solar air heat. The more complex collectors are generally used in solar power plants where solar heat is used to generate electricity by heating water to produce steam which drives a turbine connected to an electrical generator. The simpler collectors are typically used for supplemental space heating in residential and commercial buildings. A collector is a device for converting the energy in solar radiation into a more usable or storable form. The energy in sunlight is in the form of electromagnetic radiation from the infrared (long) to the ultraviolet (short) wavelengths. The solar energy striking the Earth's surface depends on weather conditions, as well as location and orientation of the surface, but overall, it averages about 1,000 watts per square meter under clear skies with the surface directly perpendicular to the sun's rays.

Flat plate collectors

edit

Flat plate collectors, developed by Hottel and Whillier in the 1950s, are the most common type. They consist of (1) a dark flat-plate absorber of solar energy, (2) a transparent cover that allows solar energy to pass through but reduces heat losses, (3) a heat-transport fluid (air, antifreeze or water) to remove heat from the absorber, and (4) a heat insulating backing. The absorber consists of a thin absorber sheet (of thermally stable polymers, aluminum, steel or copper, to which a matt black or selective coating is applied) often backed by a grid or coil of fluid tubing placed in an insulated casing with a glass or polycarbonate cover. In water heat panels, fluid is usually circulated through tubing to transfer heat from the absorber to an insulated water tank. This may be achieved directly or through a heat exchanger. Most air heat fabricates and some water heat manufacturers have a completely flooded absorber consisting of two sheets of metal which the fluid passes between. Because the heat exchange area is greater they may be marginally more efficient than traditional absorbers.[1]

There are a number of absorber piping configurations:

   * harp - traditional design with bottom pipe risers and top collection pipe, used in low pressure thermosyphon and pumped systems
   * serpentine - one continuous S that maximizes temperature but not total energy yield in variable flow systems, used in compact solar domestic hot water only systems (no space heating role)
   * completely flooded absorber consisting of two sheets of metal stamped to produce a circulation zone. Because the heat exchange area is greater they may be marginally more efficient than traditional absorbers.

As an alternative to metal collectors, new polymer flat plate collectors are now being produced in Europe. These may be wholly polymer, or they may include metal plates in front of freeze-tolerant water channels made of silicone rubber. Polymers, being flexible and therefore freeze-tolerant, are able to contain plain water instead of antifreeze, so that they may be plumbed directly into existing water tanks instead of needing to use heat exchangers which lower efficiency. By dispensing with a heat exchanger in these flat plate panels, temperatures need not be quite so high for the circulation system to be switched on, so such direct circulation panels, whether polymer or otherwise, can be more efficient, particularly at low light levels.

Some early selectively coated polymer collectors suffered from overheating when insulated, as stagnation temperatures can exceed the melting point of the polymer.[1] [2] For example, the melting point of polypropylene is 160°C, while the stagnation temperature of insulated thermal collectors can exceed 180°C if control strategies are not used. For this reason polypropylene is not often used in glazed selectively coated solar collectors. Increasingly polymers such as high temperate silicones (which melt at over 250C) are being used. Some non polypropylene polymer based glazed solar collectors are matt black coated rather than selectively coated to reduce the stagnation temperature to 150C or less.

In areas where freezing is a possibility, freeze-tolerance (the capability to freeze repeatedly without cracking) can be delivered by the use of flexible polymers. Silicone rubber pipes have been used for this purpose in UK since 1999. Conventional metal collectors are vulnerable to damage from freezing, so if they are water filled they must be carefully plumbed so they completely drain down using gravity before freezing is expected, so that they do not crack. Many metal collectors are installed as part of a sealed heat exchanger system. Rather than having the potable water flow directly through the collectors, a mixture of water and antifreeze such as propylene glycol (which is used in the food industry) is used as a heat exchange fluid to protect against freeze damage down to a locally determined risk temperature that depends on the proportion of propylene glycol in the mixture. The use of glycol lowers the water's heat carrying capacity marginally, while the addition of an extra heat exchanger may lower system performance at low light levels.

A pool or unglazed collector is a simple form of flat-plate collector without a transparent cover. Typically polypropylene or EPDM rubber or silicone rubber is used as an absorber. Used for pool heating it can work quite well when the desired output temperature is near the ambient temperature (that is, when it is warm outside). As the ambient temperature gets cooler, these collectors become less effective.

Most flat plate collectors have a life expectancy of over 25 years.

Evacuated tube collectors

edit

Most (if not all) vacuum tube collectors use heat pipes for their core instead of passing liquid directly through them. Evacuated heat pipe tubes (EHPT's) are composed of multiple evacuated glass tubes each containing an absorber plate fused to a heat pipe.[2] The heat from the hot end of the heat pipes is transferred to the transfer fluid (water or an antifreeze mix—typically propylene glycol) of a domestic hot water or hydronic space heating system in a heat exchanger called a "manifold". The manifold is wrapped in insulation and covered by a sheet metal or plastic case to protect it from the elements.

The vacuum that surrounds the outside of the tube greatly reduces convection and conduction heat loss to the outside, therefore achieving greater efficiency than flat-plate collectors, especially in colder conditions. This advantage is largely lost in warmer climates, except in those cases where very hot water is desirable, for example commercial process water. The high temperatures that can occur may require special system design to avoid or mitigate overheating conditions. Glass-glass evacuated tube

Some evacuated tubes (glass-metal) are made with one layer of glass that fuses to the heat pipe at the upper end and encloses the heat pipe and absorber in the vacuum. Others (glass-glass) are made with a double layer of glass fused together at one or both ends with a vacuum between the layers (like a vacuum bottle or flask) with the absorber and heat pipe contained at normal atmospheric pressure. Glass-glass tubes have a highly reliable vacuum seal but the two layers of glass reduce the light that reaches the absorber and there is some possibility that moisture will enter the non-evacuated area of the tube and cause absorber corrosion. Glass-metal tubes allow more light to reach the absorber and protect the absorber and heat pipe (contained in the vacuum) from corrosion even if they are made from dissimilar materials (see galvanic corrosion).

The gaps between the tubes may allow for snow to fall through the collector, minimizing the loss of production in some snowy conditions, though the lack of radiated heat from the tubes can also prevent effective shedding of accumulated snow.