Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Real sine and cosine function/Derivative/Fact
Language
Watch
Edit
The
sine function
R
⟶
R
,
x
⟼
sin
x
,
{\displaystyle \mathbb {R} \longrightarrow \mathbb {R} ,x\longmapsto \sin x,}
is
differentiable
, with
sin
′
(
x
)
=
cos
x
,
{\displaystyle {}\sin \!'(x)=\cos x\,,}
and the
cosine function
R
⟶
R
,
x
⟼
cos
x
,
{\displaystyle \mathbb {R} \longrightarrow \mathbb {R} ,x\longmapsto \cos x,}
is differentiable, with
cos
′
(
x
)
=
−
sin
x
.
{\displaystyle {}\cos \!'(x)=-\sin x\,.}
Write a proof