For a nonempty subset M ⊆ R {\displaystyle {}M\subseteq \mathbb {R} } , an upper bound T {\displaystyle {}T} of M {\displaystyle {}M} is called the supremum of M {\displaystyle {}M} , if T ≤ S {\displaystyle {}T\leq S} holds for all upper bounds S {\displaystyle {}S} of M {\displaystyle {}M} .