Give examples of convergent sequences of real numbers ( x n ) n ∈ N {\displaystyle {}{\left(x_{n}\right)}_{n\in \mathbb {N} }} and ( y n ) n ∈ N {\displaystyle {}{\left(y_{n}\right)}_{n\in \mathbb {N} }} with x n ≠ 0 {\displaystyle {}x_{n}\neq 0} , n ∈ N {\displaystyle {}n\in \mathbb {N} } , and with lim n → ∞ x n = 0 {\displaystyle {}\lim _{n\rightarrow \infty }x_{n}=0} such that the sequence